I/ Mục tiêu
· Nắm được định nghĩa tứ giác, tứ giác lồi, tổng các góc của tứ giác lồi.
· Biết vẽ, biết gọi tên các yếu tố, biết tính số đo các góc của một tứ giác lồi.
· Biết vận dụng các kiến thức trong bài vào các tình huống thực tiễn đơn giản.
II/ Phương tiện dạy học
SGK, thước thẳng, thước đo góc, bảng phụ hình 1 và 2 trang 64, hình 11 trang 67.
III/ Quá trình hoạt động trên lớp
1/ Ổn định lớp
· Hướng dẫn phương pháp học bộ môn hình học ở lớp cũng như ở nhà.
· Chia nhóm học tập.
2/ Bài mới
Ở lớp 7, học sinh đã được học về tam giác, các em đã biết tổng số đo các góc trong một tam giác là 1800. Còn tứ giác thì sao ?
231 trang |
Chia sẻ: luyenbuitvga | Lượt xem: 2767 | Lượt tải: 1
Bạn đang xem trước 20 trang mẫu tài liệu Giáo án Hình học 8, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Ngày soạn: 18/8/09 Ngày giảng : 19/8/09
CHƯƠNG I - TỨ GIÁC
Tuần 1 : Tiết 1
TỨ GIÁC
Mục tiêu
Nắm được định nghĩa tứ giác, tứ giác lồi, tổng các góc của tứ giác lồi.
Biết vẽ, biết gọi tên các yếu tố, biết tính số đo các góc của một tứ giác lồi.
Biết vận dụng các kiến thức trong bài vào các tình huống thực tiễn đơn giản.
Phương tiện dạy học
SGK, thước thẳng, thước đo góc, bảng phụ hình 1 và 2 trang 64, hình 11 trang 67.
Quá trình hoạt động trên lớp
Ổn định lớp
Hướng dẫn phương pháp học bộ môn hình học ở lớp cũng như ở nhà.
Chia nhóm học tập.
Bài mới
Ở lớp 7, học sinh đã được học về tam giác, các em đã biết tổng số đo các góc trong một tam giác là 1800. Còn tứ giác thì sao ?
Ghi bảng
Hoạt động của HS
Hoạt động của GV
Hoạt động 1 : Tứ giác
1/ Định nghĩa : SGK
Tứ giác lồi là tứ giác luôn luôn trong một nửa mặt phẳng mà bờ là đường thẳng chứa bất kì cạnh nào của tứ giác.
A
B
C
D
Tứ giác ABCD là tứ giác lồi
HS quan sát hình 1 và trả lời:hình 1 có hai đoạn thẳng BC và CD cùng nằm trên một đường thẳng nên không là tứ giác.
HS làm ?1 : đứng tại chỗ trả lời
?2 Học sinh trả lời các câu hỏi
Cho học sinh quan sát hình 1 (đã được vẽ trên bảng phụ) và trả lời
GV đưa ra định nghĩa
Giới thiệu đỉnh, cạnh tứ giác.
?1
a/ Ở hình 1c có cạnh AD (chẳng hạn).
b/ Ở hình 1b có cạnh BC (chẳng hạn), ở hình 1a không có cạnh nào mà tứ giác nằm cả hai nửa mặt phẳng có bờ là đường thẳng chứa bất kì cạnh nào của tứ giác ® Định nghĩa tứ giác lồi.
·M MMM
·P
·Q
A
B
C
D
Hình 2
?2 Học sinh trả lời các câu hỏi ở hình 2 :a/ B và C, C và D.
·N
d/ Góc : Â,. Hai góc đối nhau và .
e/ Điểm nằm trong tứ giác : M, P
Điểm nằm ngoài tứ giác : N, Q
Hoạt động 2 : Tổng các góc của một tứ giác
2/ Tổng các góc của một tứ giác.
Định lý:
A
B
C
D
1
1
2
2
Tổng bốn góc của một tứ giác bằng 3600.
HS trả lời câu ? 3
b/ Vẽ đường chéo AC
Tam giác ABC có :
Â1+1 = 1800
Tam giác ACD có :
Â2+2 = 1800
(Â1+Â2 )+1+2) = 3600
BAD + BCD = 3600
Hs phát biểu định lí
hs làm ?4
a/ Góc thứ tư của tứ giác có số đo bằng : 1450, 650
b/ HS trả lời
GV yêu cầu hs trả lời câu ? 3
GV hướng đãn hs chứng minh
 + + + = 3600
Qua bài chứng minh phát biểu định lý.
GV yêu cầu hs làm?4
a/ Góc thứ tư của tứ giác có số đo bằng : 1450, 650
GV ® Từ đó suy ra: Trong một tứ giác có nhiều nhất 3 góc nhọn, nhiều nhất 2 góc tù.
Hoạt động 3 : Bài tập
Bài 1 trang 66
Hình 5a: Tứ giác ABCD có : Â+ 3600
1100 + 1200 + 800 + x = 3600
x = 3600 – (1100 +1200 + 800)
x = 500
Hình 5b : x= 3600 – (900 + 900 + 900) = 900
Hình 5c : x= 3600 – (650 +900 + 900) = 1150
Hình 5d : x= 3600 – (750 + 900 +1200) = 950
Hình 6a : x= 3600 – (650 +900 + 900) = 1150
Hình 6a : x= 3600 – (950 + 1200 + 600) = 850
Hình 6b : Tứ giác MNPQ có : = 3600
3x + 4x+ x + 2x = 3600
10x = 3600 x = = 360
Hoạt động 4 : Hướng dẫn học ở nhà
Về nhà học bài.
Cho học sinh quan sát bảng phụ bài tập 5 trang 67, để học sinh xác định tọa độ.
Làm các bài tập 3, 4 trang 67.
Đọc “Có thể em chưa biết” trang 68.
Xem trước bài “Hình thang”.
* Rút kinh nghiệm :
Ngày soạn: 19/8/09 Ngày giảng : 20/8/09
Tiết 2
HÌNH THANG
I/ Mục tiêu
Nắm được định nghĩa hình thang, hình thang vuông, các yếu tố của hình thang. Biết cách chứng minh một tứ giác là hình thang, là hình thang vuông.
Biết vẽ hình thang, hình thang vuông. Biết tính số đo các góc của hình thang, của hình thang vuông.
Biết sử dụng dụng cụ để kiểm tra một tứ giác là hình thang.
Biết linh hoạt khi nhận dạng hình thang ở những vị trí khác nhau (hai đáy nằm ngang) và ở các dạng đặc biệt (hai cạnh bên song song, hai đáy bằng nhau).
II/ Phương tiện dạy học
SGK, thước thẳng, Eke, bảng phụ hình 15 trang 69, hình 21 trang 71.
III/ Quá trình hoạt động trên lớp
1/Ổn định lớp
2/Kiểm tra bài cũ
Định nghĩa tứ giác EFGH, thế nào là tứ giác lồi ?
Phát biểu định lý về tổng số đo các góc trong một tứ giác.
Sửa bài tập 3 trang 67
a/ Do CB = CD C nằm trên đường trung trực đoạn BD
AB = AD A nằm trên đường trung trực đoạn BD . A
B
C
D
Vậy CA là trung trực của BD
b/ Nối AC
Hai tam giác CBA và CDA có :
CBA = CDA (c-g-c)
BC = DC (gt)
BA = DA (gt)
CA là cạnh chung
=
Ta có : += 3600 - (1000 + 600) = 2000
Vậy ==1000
GV nhận xét – cho điểm
3/ Bài mới : GV Cho học sinh quan sát hình 13 SGK, nhận xét vị trí hai cạnh đối AB và CD của tứ giác ABCD từ đó giới thiệu định nghĩa hình thang.
Hoạt động của GV
Hoạt động của HS
Ghi bảng
Hoạt động 1 : Hình thang
Giới thiệu cạnh đáy, cạnh bên, đáy lớn, đáy nhỏ, đường cao.
?1 Cho học sinh quan sát bảng phụ hình 15 trang 69.
a/ Tứ giác ABCD là hình thang vì AD // BC, tứ giác EFGH là hình thang vì có GF // EH. Tứ giác INKM không là hình thang vì IN không song song MK.
b/ Hai góc kề một cạnh bên của hình thang thì như thế nào?
GV yêu cầu hs làm ?2
GV hướng dẫn hs cách làm:
a/ Do AB // CD
Â1=1 (so le trong)
AD // BC
Â2 =2 (so le trong)
Do đó ABC = CDA (g-c-g)
Suy ra : AD = BC; AB = DC ® Rút ra nhận xét
b/ Hình thang ABCD có
AB // CD Â1=1
Do đó ABC = CDA (c-g-c)
Suy ra : AD = BC
Â2 =2
Mà Â2 so le trong 2
Vậy AD // BC ® Rút ra nhận xét
HS quan sát hình 13 SGK và trả lời
HS làm ?1
HS quan sát hình vẽ và rút ra nhận xét : Hai góc kề một cạnh bên của hình thang thì bù nhau (chúng là hai góc trong cùng phía tạo bởi hai đường thẳng song song với một cát tuyến)
HS làm ?2
HS làm theo hướng dẫn của gv
2 hs lên bảng trình bày
HS rút ra nhận xét
1/ Định nghĩa
Hình thang là tứ giác có hai
A
B
C
D
H
Cạnh đáy
Cạnh
bên
Cạnh
bên
cạnh đối song song.
A
B
C
D
1
1
2
2
A
B
C
D
1
1
2
2
Nhận xét : SGK
Hoạt động 2 : Hình thang vuông
Xem hình 14 trang 69 cho biết tứ giác ABCH có phải là hình thang không ?
Cho học sinh quan sát hình 17. Tứ giác ABCD là hình thang vuông.
Cạnh trên AD của hình thang có vị trí gì đặc biệt ? ® giới thiệu định nghĩa hình thang vuông.
Yêu cầu một học sinh đọc dấu hiệu nhận biết hình thang vuông. Giải thích dấu hiệu đó.
HS quan sát hình vẽ và trả lời.
HS quan sát hình 17 và rút ra định nghĩa hình thang vuông.
HS đọc.
2/ Hình thang vuông
A
B
C
D
Định nghĩa: SGK
ABCD là hình thang
vuông khi có :
AB // DC
và Â = 900
Dấu hiệu nhận biết:
Hình thang có một góc vuông là hình thang vuông.
Hoạt động 3 : Bài tập
Bài 7 trang 71
Hình a: Hình thang ABCD (AB // CD) có Â + = 1800
x+ 800 = 1800
x = 1800 – 800 = 1000
Hình b: Â = (đồng vị) mà = 700 Vậy x=700
= (so le trong) mà = 500 Vậy y=500
Hình c: x== 900
 += 1800 mà Â=650
= 1800 – Â = 1800 – 650 = 1150
Bài 8 trang 71
Hình thang ABCD có : Â - = 200
Mà Â + = 1080
 = = 1000; = 1800 – 1000 = 800
+=1800 và =2
Do đó : 2+= 1800 3= 1800
Vậy == 600; =2 . 600 = 1200
Bài 9 trang 71
Các tứ giác ABCD và EFGH là hình thang.
Hoạt động 4 : Hướng dẫn học ở nhà
Về nhà học bài.
Làm bài tập 10 trang 71.
Xem trước bài “Hình thang cân”.
Rút kinh nghiệm :
Ngày soạn: 26/8/09 Ngày giảng : 27/8/09
Tuần 2: Tiết 3+4
HÌNH THANG CÂN
LUYỆN TẬP
I/ Mục tiêu
Nắm được định nghĩa, các tính chất, các dấu hiệu nhận biết hình thang cân.
Biết vẽ hình thang cân, biết sử dụng định nghĩa và tính chất của hình thang cân trong tính toán và chứng minh, biết chứng minh một tứ giác là hình thang cân.
Rèn luyện tính chính xác và cách lập luận chứng minh hình học.
II/ Phương tiện dạy học
SGK, thước chia khoảng, thước đo góc, bảng phụ hình 23 trang 72, hình 30, 31, 32 trang 74, 75 (các bài tập 11, 14, 19)
III/ Quá trình hoạt động trên lớp
1/ Ổn định lớp
2/ Kiểm tra bài cũ
Định nghĩa hình thang, vẽ hình thang CDEF và đường cao CK của nó.
Định nghĩa hình thang vuông, nêu dấu hiệu nhận biết hình thang vuông.
Sửa bài tập 10 trang 71
1
1
2
A
B
C
D
Tam giác ABC có AB = AC (gt)
Nên ABC là tam giác cân Â1 =
Ta lại có : Â1 = Â2 (AC là phân giác Â)
BC // AD
Do đó : = Â2
Mà so le trong Â2
Vậy ABCD là hình thang
3/Bài mới
Cho học sinh quan sát hình 23 SGK, nhận xét xem có gì đặc biệt. Sau đó giới thiệu hình thang cân
Hoạt động của GV
Hoạt động của HS
Ghi bảng
Hoạt động 1 : Định nghĩa hình thang cân
?1 Hình thang ABCD ở hình bên có gì đặc biệt?
Hình 23 SGK là hình thang cân.
Thế nào là hình thang cân ?
?2 Cho học sinh quan sát bảng phụ hình 23 trang 72.
a/ Các hình thang cân là : ABCD, IKMN, PQST.
b/ Các góc còn lại := 1000,
= 1100, =700, = 900.
c/ Hai góc đối của hình thang cân thì bù nhau.
HS quan sát hình vẽ và trả lời.
ABCD là hình thang cân
(đáy AB, CD)
HS đọc định nghĩa SGK.
1/ Định nghĩa
Hình thang cân là hình thang có hai góc kề một đáy bằng nhau.
A
B
C
D
AB // CD
=(hoặc  =)
Hoạt động 2 : Các định lý
Chứng minh định lí 1:
GV hướng dẫn hs chứng minh định lí
GV vẽ hình theo các
Chứng minh định lý 2 :
Căn cứ vào định lý 1, ta có hai đoạn thẳng nào bằng nhau ?
Quan sát hình vẽ rồi dự đoán xem còn có hai đoạn thẳng nào bằng nhau nữa ?
GV hướng dẫn hs làm.
Hai tam giác ADC và BDC có :
(c-g-c)
CD là cạnh chung
ADC = BCD
AD = BC (định lý 1 nói trên)
Suy ra AC = BD
A
B
C
D
1
1
2
2
O
HS trình bày c/m
HS trả lời.
2/ Tính chất:
A
B
C
D
Định lý 1 : Trong hình thang cân hai cạnh bên bằng nhau
ABCD là
GT hình thang cân
(đáy AB, CD)
KL AD = BC
C/M : SGK
Định lý 2 : Trong hình thang cân hai đường chéo bằng nhau.
ABCD là
GT hình thang cân
(đáy AB, CD)
KL AC = BD
c/m : SGK
Hoạt động 3 : Dấu hiệu nhận biết
Hoạt động của GV
Hoạt động của HS
Ghi bảng
?3 Dùng compa vẽ các điểm A và B nằm trên m sao cho : AC = BD
(các đoạn AC và BD phải cắt nhau). Đo các góc ở đỉnh C và D của hình thang ABCD ta thấy . Từ đó dự đoán ABCD là hình thang cân.
m
HS làm câu ?3
3/ Dấu hiệu nhận biết
Định lý 3 : Hình thang có hai đường chéo bằng nhau là hình thang cân.
Dấu hiệu nhận biết : SGK
Hoạt động 4 : Luyện tập
Bài 11 trang 74
Đo độ dài cạnh ô vuông là 1cm. Suy ra:
AB = 2cm
CD = 4cm
AD = BC =
Bài 12 trang 74
Hai tam giác vuông AED và BFC có :
AD = BC (cạnh bên hình thang cân ABCD)
(2 góc kề đáy hình thang cân ABCD)
Vậy (cạnh huyền – góc nhọn)
DE = CF
Bài 13 trang 74
Hai tam giác ACD và BDC có :
AD = BC (cạnh bên hình thang cân ABCD)
AC = BD (đường chéo hình thang cân ABCD)
DC là cạnh chung
Vậy (c-c-c)
do đó cân
ED = EC
Mà BD = AC
Vậy EA = EB
Bài14 trang 75
Học sinh quan sát bảng phụ trang 79
Tứ giác ABCD là hình thang cân (dựa vào dấu hiệu nhận biết)
Tứ giác EFGH là hình thang
Bài 15 trang 75
a/ Tam giác ABC cân tại A nên :
Do tam giác ABC cân tại A (có AD = AE) nên :
Do đó
Mà đồng vị
Nên DE // BC
Vậy tứ giác BDEC là hình thang
Hình thang BDEC có nên là hình thang cân
b/ Biết Â= 500 suy ra:
650
Bài 16 trang 75
(BD là tia phân giác )
(CE là phân giác )
Mà (cân)
Hai tam giác ABD và ACE có :
 là góc chung
AB = AC (cân)
Vậy (g-c-g)
AD = AE
Chứng minh BEDC là hình thang cân như câu a bài 15
do đó cân
DE // BC (so le trong)
Mà (cmt)
Vậy BE = DE
Bài 17 trang 75
Gọi E là giao điểm của AC và BD
Tam giác ECD có : (do ACD = BDC)
Nên là tam giác cân ED = EC (1)
Do (so le trong)
(so le trong)
Mà (cmt)
nên là tam giác cân
EA = EB (2)
Từ (1) và (2) AC = BD
Vậy hình thang ABCD có hai đường chéo bằng nhau là hình thang cân
Hoạt động 5 : Hướng dẫn học ở nhà
Về nhà học bài
Làm bài tập 18 trang 75
Xem trước bài “Đường trung bình của tam giác, của hình thang”
* Rút kinh nghiệm :
---------------e f---------------
Ngày soạn : 2/9/09 Ngày giảng : 3/9/09
Tuần 3 : Tiết 5+6
ĐƯỜNG TRUNG BÌNH CỦA TAM GIÁC, CỦA HÌNH THANG
I/ Mục tiêu
Nắm được định nghĩa và các định lý 1, định lý 2 về đường trung bình của tam giác, đường trung bình của hình thang.
Biết vận dụng các định lý về đường trung bình cùa tam giác, của hình thang để tính độ dài, chứng minh hai đoạn thẳng bằng nhau, hai đoạn thẳng song song.
Rèn luyện cách lập luận trong chứng minh định lý và vận dụng các định lý đã học vào các bài toán thực tế.
II/ Phương tiện dạy học
SGK, thước thẳng, êke.
III/ Quá trình hoạt động trên lớp
1/ Ổn định lớp
2/ Kiểm tra bài cũ
Định nghĩa hình thang cân
Muốn chứng minh một tứ giác là hình thang cân ta phải làm sao ?
Sửa bài tập 18 trang 75
BE = BD do đó cân
a/ Hình thang ABEC (AB // CE) có hai cạnh bên AC, BE song song nên chúng bằng nhau : AC = BE
mà AC = BD (gt)
b/ Do AC // BE (đồng vị)
mà (cân tại B)
Tam giác ACD và BCD có :
AC = BD (gt)
(cmt)
DC là cạnh chung
Vậy (c-g-c)
c/ Do (cmt) ADC = BCD
Hình thang ABCD có hai góc kề một đáy bằng nhau nên là hình thang cân.
Giáo viên nhận xét co điểm.
3/ Bài mới
Ghi bảng
Hoạt động của HS
Hoạt động của GV
Hoạt động 1 : Đường trung bình của tam giác
?1 Dự đoán E là trung điểm AC ® Phát biểu dự đoán trên thành định lý.
Chứng minh
Kẻ EF // AB (F BC)
Hình thang DEFB có hai cạnh bên song song (DB // EF) nên DB = EF
Mà AD = DB (gt). Vậy AD = EF
Tam giác ADE và EFC có :
 = (đồng vị)
AD = EF (cmt)
(cùng bằng )
Vậy (g-c-g)
AE = EC
E là trung điểm AC
Học sinh làm ?2 ® Định lý 2
Chứng minh định lý 2
Vẽ điểm F sao cho E là trung điểm DF
(c-g-c)
AD = FC và Â =
Ta có : AD = DB (gt)
Và AD = FC
DB = FC
Ta có : Â =
Mà Â so le trong
AD // CF tức là AB // CF
Do đó DBCF là hình thang
Hình thang DBCF có hai đáy DB = FC nên DF = BC và DF // BC
Do đó DE // BC và DE =
?3 Trên hình 33. DE là đường trung bình
Vậy BC = 2DE = 100m
Học sinh làm ?1
Học sinh làm ?2
Học sinh làm ?3
1/ Đường trung bình của tam giác
Định lý 1: Đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm cạnh thứ ba.
GT AD = DB
DE // BC
KL AE = EC
Định nghĩa : Đường trung bình của tam giác là đoạn thẳng nối trung điểm hai cạnh của tam giác.
Định lý 2 : Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy.
AD = DB
AE = EC
GT DE // BC
KL
Bài tập 20 trang 79
Tam giác ABC có
Mà đồng vị
Do đó IK // BC
Ngoài ra KA = KC = 8
IA = IB mà IB = 10 .Vậy IA = 10
Bài tập 21 trang 79
Do C là trung điểm OA, D là trung điểm OB
CD là đường trung bình
Ghi bảng
Hoạt động của HS
Hoạt động của GV
Hoạt động 2 : Đường trung bình của hình thang
?4 Nhận xét : I là trung điểm của AC, F là trung điểm của BC
® Phát biểu thành định lý
Chứng minh
Gọi I là giao điểm của AC và EF
Tam giác ADC có :
E là trung điểm của AD(gt)
EI // DC (gt)
I là trung điểm của AC
Tam giác ABC có :
I là trung điểm AC (gt)
IF // AB (gt)
F là trung điểm của BC
Giới thiệu đường trung bình của hình thang ABCD (đoạn thẳng EF)
Chứng minh định lý 2
Gọi K là giao điểm của AF và DC
Tam giác FBA và FCK có :
(đối đỉnh)
FB = FC (gt)
(so le trong)
Vậy (g-c-g)
AE = FK; AB = CK
Tam giác ADK có E; F lần lượt là trung điểm của AD và AK nên EF là đường trung bình
EF // DK
(tức là EF // AB và EF // CD)
Và
?5
Vậy x = 40
HS làm ?4
2/ Đường trung bình của hình thang
Định lý 1 : Đường thẳng đi qua trung điểm một cạnh bên của hình thang và song song với hai đáy thì đi qua trung điểm cạnh bên thứ hai.
ABCD là hình thang
(đáy AB, CD)
GT AE = ED
EF // AB
EF // CD
KL BF = FC
Định nghĩa : Đường trung bình của hình thang là đoạn thẳng nối trung điểm hai cạnh bên của hình thang.
Làm bài tập 23 trang 84
Định lý 2 : Đường trung bình của hình thang thì song song với hai đáy và bằng nửa tổng hai đáy.
Hình thang ABCD
(đáy AB, CD)
GT AE = ED; BF = FC
KL EF // AB; EF // CD
Ngày soạn : 8/9/09 Ngày giảng : 9/9/09
Tuần 4 Tiết 7 Luyện tập
I /Mơc tiªu :
- Cđng cè c¸c kiÕn thøc vỊ ®êng trung b×nh cđa tam gi¸c, cđa h×nh thang .
-VËn dơng ®ỵc c¸c ®Þnh lý ®· häc ®Ĩ tÝnh ®é dµi, chøng minh hai ®o¹n th¼ng b»ng nhau, hai ®êng th¼ng song song.
- RÌn luyƯn c¸ch lËp luËn trong chøng minh vµ vËn dung c¸c ®Þnh lý ®· häc vµo c¸c bµi to¸n thùc tiƠn .
-RÌn luyƯn kÜ n¨ng vÏ h×nh chÝnh x¸c, cÈn thËn, s¸ng t¹o khi chøng minh .
II /C¸c bíc tiÕn hµnh :
1/KiĨm tra bµi cị
-HS ph¸t biĨu ®Þnh nghÜa, ®Þnh lý 3, 4 cđa ®êng trung b×nh h×nh thang . (3®)
+Lµm bµi tËp 24 sgk. -HS lµm bµi 25 sgk . (10®)
2/ Bµi míi : Luyện tập
Bài 24 trang 80
Khoảng cách từ trung điểm C của AB
đến đường thẳng xy bằng :
Bài 22 trang 80
Tam giác BDC có :
EM là đường trung bình
DE = EB
BM = MC
Do đó EM // DC EM // DI
Tam giác AEM có :
AI = IM (định lý)
AD = DE
EM // DI
Bài 25 trang 80
Tam giác ABD có :
E, F lần lượt là trung điểm của AD và BD
nên EF là đường trung bình
EF // AD
Mà AD // BC
EF // BC (1)
Tam giác CBD có :
K, F lần lượt là trung điểm của BDvà DC
nên KF là đường trung bình
KF // CB (2)
Từ (1) và (2) ta thấy : Qua F có FE và FK cùng song song với BC nên theo tiên đề Ơclit E, F, K thẳng hàng.
Bài 27 trang 80
a/ Tam giác ADC có :
E, K lần lượt là trung điểm của AD và AC
nên EK là đường trung bình (1)
Tam giác ADC có :
K, F lần lượt là trung điểm của AC và BC nên KF là đường trung bình (2)
b/ Ta có : EF (bất đẳng thức ) (3)
Từ (1), (2) và (3)
Hoạt động 4 : Hướng dẫn học ở nhà
Về nhà học bài
Làm bài tập 26, 28 trang 80
Tự ôn lại các bài toán dựng hình đã biết ở lớp 7 :
Dựng đoạn thẳng bằng đoạn thẳng cho trước
Dựng một góc bằng một góc cho trước
Dựng đường trung trực của một đoạn thẳng cho trước, dựng trung điểm của một đoạn thẳng cho trước.
Dựng tia phân giác của một góc cho trước.
Qua một điểm cho trước dựng đường thẳng vuông góc với một đường thẳng cho trước.
Qua một điểm nằm ngoài một đường thẳng cho trước, dựng đường thẳng song song với một đường thẳng cho trước.
Dựng tam giác biết ba cạnh, biết hai cạnh và góc xen giữa, biết một cạnh và hai góc kề.
Xem trước bài “Dựng hình thang”.
---------------g h---------------
TuÇn : 4
TiÕt : 8
DùNG H×NH B»NG THíc vµ compa
So¹n : 9/9/09
gi¶ng: 10/9/09
I/ Mơc tiªu:
-BiÕt dïng thíc vµ com pa ®Ĩ dùng h×nh (chđ yÕu lµ dùng h×nh thang) theo c¸c yÕu tè ®· cho b»ng sè vµ biÕt tr×nh bµy c¸h dùng vµ cchøng minh.
-BiÕt sư dơng thíc vµ com pa ®Ĩ dùng h×nh vµo vë mét c¸ch t¬ng ®èi chÝnh x¸c.
- RÌn luyƯn tÝnh cÈn thËn, chÝnh x¸c khi sư dơng dơng cơ; rÌn luyƯn kh¶ n¨ng suy luËn khi chøng minh.
II/ chuÈn bÞ :
-Thíc, com pa, thíc ®o gãc.
-Häc sinh «n tËp 7 bµi to¸n dùng h×nh ®· häc ë líp 6 vµ líp 7 nªu trong mơc 2 cđa sgk.
III/c¸c bíc tiÕn hµnh:
1/ kiĨm tra bµi cị:
-Cho ®o¹n th¼ng AB = 6cm. H·y dùng ®o¹n th¼ng CD = AB (5®).
Cho gãc xOy b»ng 500. H·y dùng mét gãc b»ng gãc xOy (5®
-Cho ®o¹n th¼ng AB . H·y dùng ®êng trung trùc cđa ®o¹n th¼ng AB. (5®).
Cho gãc xOy kh¸c gãc bĐt . H·y dùng tia ph©n gi¸c cđa gãc ®ã (5®).
2/ Bµi míi :
Ho¹t ®éng cđa thÇy :
Ho¹t ®éng cđa trß :
Ghi b¶ng:
-Ta ®· biÕt vÏ h×nh b»ng nhiỊu dơng cơ: thíc (th¬c th¼ng), com pa, ªke, thíc ®o gãc. Ta xÐt c¸c bµi to¸n vÏ h×nh mµ chØ sư dơng hai dơng cơ lµ thíc vµ com pa, chĩng ®ỵc gäi lµ bµi to¸n dùng h×nh.
-Gi¸o viªn nªu t¸c dơng cđa thíc, cđa com pa trong bµi to¸n dùng h×nh nh ë sgk.
-ë h×nh häc líp 6 vµ líp 7, víi thíc vµ com pa ta ®· biÕt c¸ch gi¶i c¸c bµi dùng h×nh nµo ? (dùa vµo phÇn kiĨm tra bµi cị häc sinh cã thĨ tr¶ lêi 4 bµi to¸n dùng h×nh nh ë sgk.
-Gi¸o viªn híng dÉn häc sinh «n tiÕp 3 bµi to¸n dùng h×nh tiÕp theo nh ë sgk.
-Häc sinh lµm bµi tËp .
+Dùng tam gi¸c ADC biÕt AD = 2cm, DC = 4cm, ADC = 700.
-Dùa vµo bµi to¸n dùng h×nh nµo ta dùng ®ỵc tam gi¸c ADC ?
-Häc sinh lªn b¶ng dùng, c¸c em kh¸c dùng vµo vë.
-Cho hs ®äc vÝ dơ ë sgk.
-Gi¸oviƯn vÏ ph¸c ho¹ h×nh vÏ lªn b¶ng vµ ph©n tÝch:gi¶ sư ®· dùng ®ỵc h×nh thang ABCD thoa m·n yªu cÇu cđa ®Ị bµi .
+Tam gi¸c nµo cã thĨ dùng ®ỵc ngay ?
+ ChØ cßn dùng ®iĨm nµo n÷a ? §iĨm ®ã tho¶ m·n yªu cÇu nµo? V× sao?
Tõ ph©n tÝch ®ã h·y nªu lªn c¸ch dùng?
-Gi¸o viªn dùng h×nh trªn b¶ng, thĨ hiƯn c¸c nÐt dùng trªn h×nh vÏ, hs dùng vµo vë.
-Gi¸o viªn gäi häc sinh gi¶i thÝch v× sao h×nh thang võa dùng ®ỵc tho¶ m·n yªu cÇu cđa ®Ị bµi.
-Tr×nh bµy bíc chøng minh ?
-Ta lu«n dùng ®ỵc mét h×nh thang tho¶ m·n ®iỊu kiƯn cđa ®Ị bµi.
-Gi¸o viªn cÇn lu ý: gi¶i bµi to¸n dùng h×nh ta chØ cÇn tr×nh bµy 2 phÇn : c¸ch dùng vµ chøng minh.
-Dùng mét ®o¹n th¼ng b»ng mét ®o¹n th¼ng cho trøoc.
-Dùng mét gãc b»ng mét gãc cho trøoc.
-Dùng ®ßng trung trùc cđa mét ®o¹n th¼ng cho tríc, dùng trung ®iĨm cđa mét ®o¹n th¼ng cho tríc.
-Dùng tia ph©n gi¸c cđa mét gãc cho tríc.
.+Dùa vaß bµi to¸n dùng h×nh b ta dùng ®ỵc gãc xDy b»ng 700
+ Dùa vaß bµi to¸n dùng h×nh a ta dùng ®ỵc AD = 2cm, DC =4cm
Sau ®ã hs dùng h×nh.
+Tam gi¸c ACD dùng ®ỵc v× biÕt hai c¹nh vµ gãc xen gi÷a.
+ ChØ cßn dùng ®iĨm B §iĨm B ph¶i tho¶ m·n 2 yªu cÇu : B n»m trªn ®êng th¼ng ®i qua Avµ song song víi CD ,B c¸ch A mét kho¶ng 3cm
Hs nªu c¸ch dùng
+Tø gi¸c ABCD lµ h×nh thang v× AB//CD.
+H×nh thang ABCD cã CD =4cm, D =700, AD=2cm AB =3cm (theo c¸ch dùng).
I/ Bµi to¸n dùng h×nh :
(SGK)
II/ C¸c bµi to¸n dùng h×nh ®· biÕt : (SGK)
III/Dùng h×nh thang :
VÝ dơ : Dùng h×nh thang ABCD biÕt ®¸y AB =3cm, ®¸y CD = 4cm, c¹nh bªn AD = 2cm, D = 700
Gi¶i :
*C¸ch dùng :
-Dùng ACD cã D = 700, DC = 4cm, DA = 2cm.
-Dùng tia Ax song song víi DC(tia Ax vµ ®iĨm C n»m trong cïng mét nưa mỈt ph¼ng bê AD).
-Dùng ®iĨm B trªn tia Ax
sao cho AB = 3cm. KỴ ®o¹n th¼ng BC. 3
B x
*Chøng minh :
Tø gi¸c ABCD lµ h×nh thang v× AB // CD.
H×nh thang ABCD cã
CD = 4cm, D =700, AD = 2cm, AB=3cm nªn tho¶ m·n yªu cÇu cđa bµi to¸n.
3/Cđng cè :
-Th«ng qua vÝ dơ trªn ,gi¸o viªn nh¾c l¹i néi dung cđa c¸c phÇn C¸ch dùng vµ chøng minh.
-HS ho¹t ®éng nhãm bµi 29sgk.
4/DỈn dß :
- VỊ xem l¹i vÝ dơ sgk.
-Lµm bµi tËp 29, 30,31 ,32 sgk.
*Bµi tËp häc sinh yÕu kÐm : Dùng tam gi¸c ABC biÕt Ab = 3 cm; BC = 4cm; AC = 5cm.
TuÇn : 5
TiỊt : 9
LUYÃÛN TÁÛP
so¹n : 16/9/09
gi¶ng : 17/9/09
I/Mơc tiªu :
-hs thµnh th¹o dïng thíc vµ com pa ®Ĩ dùng h×nh .
-VËn dơng thµnh thậ c¸c bµi to¸n dùng h×nh c¬ b¶n vµo c¸c bµi to¸n dùng h×nh .
-HS biÕt c¸ch tr×nh bµi to¸n dùng h×nh gåm hai phÇn C¸ch dùng vµ Chøng minh .
-RÌn luyƯn tÝnh cÈn thËn,chÝnh x¸c khi sư dơng cơ; rÌn luyƯn kh¶ n¨ng suy luËn
khi chøng minh. Cã ý thøc vËn dơng dùng h×nh vµo thùc tÕ.
II/ChuÈn bÞ : Thíc, com pa.
III/C¸c bíc tiÕn hµnh :
1/kiĨm tra bµi cị :
-HS 1 lµm bµi 30sgk.
-HS2 lµm bµi 31 sgk.
§¸p ¸n : Nªu ®ỵc c¸ch dùng, dùng h×nh ®ĩng (7®). Chøng minh ®ĩng (3®).
2/Bµi míi :
Ho¹t ®éng cđa thÇy
Ho¹t ®éng cđa trß
Ghi b¶ng
-HS lµm bµi 32 sgk.
Gỵi ý : Gãc 300 cã quan hƯ víi tam gi¸c nµo?
Cho hs nªu c¸ch dùng vµ ch/ minh
-HS lµm bµi 33 sgk.
GV: Gi¶ sư dùng ®ỵc h×nh thang ABCD tho¶ m·n ®Ị bµi.
-Dùa vµo ®Ị bµi c¸c yÕu tè nµo dùng ®ỵc?
-Nh vËy ta dùng ®ỵc ba ®Ønh nµo cđa h×nh than
File đính kèm:
- hinhhoc8.doc