ài 2.1: Nước giải khát được chở từ Sài Gòn đi Vũng Tàu. Mỗi xe chở
1000 chai bia Sài Gòn, 2000 chai coca và 800 chai nước trái cây. Xác suất
để 1 chai mỗi loại bị bể trên đường đi tương ứng là 0,2%; 0,11% và 0,3%.
Nếu không quá 1 chai bị bể thì lái xe được thưởng.
a) Tính xác suất có ít nhất 1 chai bia Sài Gòn bị bể.
b) Tính xác suất để lái xe được thưởng.
c) Lái xe phải chở ít mất mấy chuyến để xác suất có ít nhất một chuyến
được thưởng không nhỏ hơn 0,9?
13 trang |
Chia sẻ: lephuong6688 | Lượt xem: 2871 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Giáo án môn Đại số lớp 11 - Chương 2: Đại lượng ngẫu nhiên và phân phối xác suất, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
1
BÀI GIẢI
XÁC SUẤT THỐNG KÊ
(GV: Trần Ngọc Hội – 2009)
CHƯƠNG 2
ĐẠI LƯỢNG NGẪU NHIÊN
VÀ PHÂN PHỐI XÁC SUẤT
Bài 2.1: Nước giải khát được chở từ Sài Gòn đi Vũng Tàu. Mỗi xe chở
1000 chai bia Sài Gòn, 2000 chai coca và 800 chai nước trái cây. Xác suất
để 1 chai mỗi loại bị bể trên đường đi tương ứng là 0,2%; 0,11% và 0,3%.
Nếu không quá 1 chai bị bể thì lái xe được thưởng.
a) Tính xác suất có ít nhất 1 chai bia Sài Gòn bị bể.
b) Tính xác suất để lái xe được thưởng.
c) Lái xe phải chở ít mất mấy chuyến để xác suất có ít nhất một chuyến
được thưởng không nhỏ hơn 0,9?
Lời giải
Tóm tắt:
Loại Bia Sài
Gòn
Coca Nước trái cây
Số lượng/chuyến 1000 2000 800
Xác suất 1 chai
bể
0,2% 0,11% 0,3%
- Gọi X1 là ĐLNN chỉ số chai bia SG bị bể trong một chuyến. Khi đó,
X1 có phân phối nhị thức X1 ∼ B(n1,p1) với n1 = 1000 và p1 = 0,2% =
0,002. Vì n1 khá lớn và p1 khá bé nên ta có thể xem X1 có phân phân
phối Poisson:
X1 ∼ P(a1) với a1 = n1p1 = 1000.0,002 = 2, nghĩa là
X1 ∼ P(2).
- Tương tự, gọi X2 , X3 lần lượt là các ĐLNN chỉ số chai bia coca, chai
nước trái cây bị bể trong một chuyến. Khi đó, X2 , X3 có phân phối
Poisson:
X2 ∼ P(2000.0,0011) = P(2,2);
X3 ∼ P(800.0,003) = P(2,4).
2
a) Xác suất có ít nhất 1 chai bia Sài Gòn bị bể là
2 0
2
1 1
e 2P(X 1) 1 P(X 0) 1 1 e 0, 8647.
0!
−
−≥ = − = = − = − =
b) Tính xác suất để lái xe được thưởng.
Theo giả thiết, lái xe được thưởng khi có không quá 1 chai bị bể, nghĩa
là
X1 + X2 + X3 ≤ 1.
Vì X1 ∼ P(2);X2 ∼ P(2,2); X3 ∼ P(2,4) nên X1 + X2 + X3 ∼ P(2+2,2 + 2,4) =
P(6,6)
Suy ra xác suất lái xe được thưởng là:
P(X1 + X2 + X3 ≤ 1) = P[(X1 + X2 + X3 =0) + P(X1 + X2 + X3 = 1)]=
6 ,6 0 6 , 6 1e (6, 6 ) e (6, 6 )
0 ! 1 !
− −
+ = 0,0103.
c) Lái xe phải chở ít mất mấy chuyến để xác suất có ít nhất một chuyến
được thưởng không nhỏ hơn 0,9?
Gọi n là số chuyến xe cần thực hiện và A là biến cố có ít nhất 1 chuyến
được thưởng. Yêu cầu bài toán là xác định n nhỏ nhất sao cho P(A) ≥ 0,9.
Biến cố đối lập của A là: A không có chuyến nào được thưởng.
Theo câu b), xác suất để lái xe được thưởng trong một chuyến là p =
0,0103. Do đó theo công thức Bernoulli ta có:
n n
n
P(A) 1 P(A) 1 q 1 (1 0, 0103)
1 (0, 9897) .
= − = − = − −
= −
Suy ra
n
n
P(A) 0, 9 1 (0, 9897) 0, 9
(0, 9897) 0,1
n ln(0, 9897) ln 0,1
ln 0,1n 222, 3987
ln(0, 9897)
n 223.
≥ ⇔ − ≥
⇔ ≤
⇔ ≤
⇔ ≥ ≈
⇔ ≥
Printed with FinePrint trial version - purchase at www.fineprint.com
3
Vậy lái xe phải chở ít nhất là 223 chuyến.
Bài 2.2: Một máy tính gồm 1000 linh kiện A, 800 linh kiện B và 2000
linh kiện C. Xácsuất hỏng của ba linh kiện đó lần lượt là 0,02%; 0,0125%
và 0,005%. Máy tính ngưng hoạt động khi số linh kiện hỏng nhiều hơn 1.
Các linh kiện hỏng độc lập với nhau.
a) Tính xácsuất để có ít nhất 1 linh kiện B bị hỏng.
b) Tính xác suất để máy tính ngưng hoạt động.
c) Giả sử trong máy đã có 1 linh kiện hỏng. Tính xác suất để máy tính
ngưng hoạt động.
Lời giải
Tóm tắt:
Loại linh kiện A B C
Số lượng/1máy 1000 800 2000
Xác suất 1linh kiện hỏng 0,02% 0,0125% 0,005%
- Gọi X1 là ĐLNN chỉ số linh kiện A bị hỏng trong một máy tính. Khi
đó, X1 có phân phối nhị thức X1 ∼ B(n1,p1) với n1 = 1000 và p1 =
0,02% = 0,0002. Vì n1 khá lớn và p1 khá bé nên ta có thể xem X1 có
phân phân phối Poisson:
X1 ∼ P(a1) với a1 = n1p1 = 1000.0,0002 =0,2, nghĩa là
X1 ∼ P(0,2).
- Tương tự, gọi X2, X3 lần lượt là các ĐLNN chỉ số linh kiện B, C bị
hỏng trong một máy tính. Khi đó, X2 , X3 có phân phối Poisson như
sau:
X2 ∼ P(800.0,0125%) = P(0,1);
X3 ∼ P(2000.0,005%) = P(0,1).
a) Xác suất có ít nhất 1 linh linh kiện B bị hỏng là:
0,1 0
0,1
2 2
e (0,1)P(X 1) 1 P(X 0) 1 1 e 0, 0952.
0!
−
−≥ = − = = − = − =
b) Tính xác suất để máy tính ngưng hoạt động.
4
Theo giả thiết, máy tính ngưng hoạt động khi số linh kiện hỏng nhiều
hơn 1, nghĩa là khi
X1 + X2 + X3 > 1.
Vì X1 ∼ P(0,2);X2 ∼ P(0,1); X3 ∼ P(0,1) nên X1 + X2 + X3 ∼ P(0,2+0,1 +
0,1) = P(0,4)
Suy ra xác suất để máy tính ngưng hoạt động là:
P(X1 + X2 + X3 > 1) = 1 - P(X1 + X2 + X3 ≤ 1)
= 1- [P(X1 + X2 + X3 = 0) + P(X1 + X2 + X3 = 1)] =
0,4 0 0,4 1e (0, 4) e (0, 4)1
0! 1!
− −
− −
= 1-1,4.e-0,4 = 0,0615 = 6,15%.
c) Giả sử trong máy đã có 1 linh kiện hỏng. Khi đó máy tính ngưng
hoạt động khi có thêm ít nhất 1 linh kiện hỏng nữa, nghĩa là khi
X1 + X2 + X3 ≥ 1.
Suy ra xác suất để máy tính ngưng hoạt động trong trường hợp này là:
P(X1 + X2 + X3 ≥ 1) = 1 - P(X1 + X2 + X3 < 1) = 1- P(X1 + X2 + X3 = 0)
=
0,4 0e (0, 4)1
0!
−
− = 1-e-0,4 = 0,3297 = 32,97%.
Bài 2.3: Trọng lượng của một loại sản phẩm được quan sát là một đại
lượng ngẫu nhiên có phân phối chuẩn với trung bình 50kg và phương sai
100kg2 . Những sản phẩm có trọng lượng từ 45kg đến 70kg được xếp vào
loại A. Chọn ngẫu nhiên 100 sản phẩm (trong rất nhiều sản phẩm). Tính
xác suất để
a) có đúng 70 sản phẩm loại A.
b) có không quá 60 sản phẩm loại A.
c) có ít nhất 65 sản phẩm loại A.
Lời giải
Trước hết ta tìm xác suất để một sản phẩm thuộc loại A.
Printed with FinePrint trial version - purchase at www.fineprint.com
5
Gọi X0 là trọng lượng của loại sản phẩm đã cho. Từ giả thiết ta suy ra
X0 có phân phối chuẩn X0 ∼ N(μ0, σ02) với μ0 = 50, σ02 = 100 (σ0 = 10).
Vì một sản phẩm được xếp vào loại A khi có trọng lượng từ 45kg đến
70kg nên xác suất để một sản phẩm thuộc loại A là P(45 ≤ X0 ≤ 70).
Ta có
0 0
0
0 0
70 45 70 50 45 50P(45 X 70) ( ) ( ) ( ) ( )
10 10
(2) ( 0,5) (2) (0,5) 0, 4772 0,1915 0, 6687.
− μ − μ − −≤ ≤ = ϕ − ϕ = ϕ − ϕσ σ
= ϕ − ϕ − = ϕ + ϕ = + =
(Tra bảng giá trị hàm Laplace ta được ϕ (2) = 0,4772; ϕ (0,5) = 0,1915).
Vậy xác suất để một sản phẩm thuộc loại A là p =0,6687.
Bây giờ, kiểm tra 100 sản phẩm. Gọi X là số sản phẩm loại A có trong
100 sản phẩm được kiểm tra, thì X có phân phối nhị thức X ∼ B(n,p)
với n = 100, p = 0,6687. Vì n = 100 khá lớn và p = 0,6687 không
quá gần 0 cũng không quá gần 1 nên ta có thể xem X có phân phối
chuẩn như sau:
X ∼ N(μ, σ2)
với μ = np = 100.0,6687 = 66,87;
npq 100.0, 6687.(1 0, 6687) 4,7068.σ = = − =
a) Xác suất để có 70 sản phẩm loại A làø:
1 70 1 70 66, 87P (X 70) f ( ) f ( )
4,7068 4,7068
1 0, 3209f (0, 66) 0, 0681 6, 81%.
4,7068 4,7068
− μ −= = =σ σ
= = = =
(Tra bảng giá trị hàm Gauss ta được f(0,66) = 0,3209).
b) Xác suất để có không quá 60 sản phẩm loại A là:
60 0 60 66,87 0 66,87P (0 X 60) ( ) ( ) ( ) ( )
4,7068 4,7068
( 1,46) ( 14,21) (1,46) (14,21) (1,46) (5)
0,4279 0,5 0,0721 7,21%.
− μ − μ − −≤ ≤ = ϕ − ϕ = ϕ − ϕσ σ
= ϕ − − ϕ − = −ϕ + ϕ = −ϕ + ϕ
= − + = =
(Tra bảng giá trị hàm Laplace ta được ϕ (14,21) = ϕ (5) = 0,5; ϕ(1,46) =
0,4279).
6
c) Xác suất để có ít nhất 65 sản phẩm loại A là:
100 65 100 66,87 65 66,87P (65 X 100) ( ) ( ) ( ) ( )
4,7068 4,7068
(7,0388) ( 0,40) (5) (0,4) 0,5 0,1554 0,6554 65,54%.
− μ − μ − −≤ ≤ = ϕ − ϕ = ϕ − ϕσ σ
= ϕ − ϕ − = ϕ + ϕ = + = =
(Tra bảng giá trị hàm Laplace ta được ϕ (7,7068)≈ ϕ (5) = 0,5; ϕ(0,4) =
0,1554).
Bài 2.4: Sản phẩm trong một nhà máy được đóng thành từng kiện, mỗi
kiện gồm 14 sản phẩm trong đó có 8 sản phẩm loại A và 6 sản phẩm loại
B. Khách hàng chọn cách kiểm tra như sau: từ mỗi kiện lấy ra 4 sản
phẩm; nếu thấy số sản phẩm thuộc loại A nhiều hơn số sản phẩm thuộc
loại B thì mới nhận kiện đó; ngược lại thì loại kiện đó. Kiểm tra 100
kiện (trong rất nhiều kiện). Tính xác suất để
a) có 42 kiện được nhận.
b) có từ 40 đến 45 kiện được nhận.
c) có ít nhất 42 kiện được nhận.
Lời giải
Trước hết ta tìm xác suất để một kiện được nhận.
Theo giả thiết, mỗi kiện chứa 14 sản phẩm gồm 8A và 6B. Từ mỗi kiện
lấy ra 4 sản phẩm; nếu thấy số sản phẩm A nhiều hơn số sản phẩm B,
nghĩa là được 3A,1B hoặc 4A, thì mới nhận kiện đó. Do đó xác suất để
một kiện được nhận là:
3 1 4 0
8 6 8 6
4 4 4 4 4
14 14
C C C CP (3 k 4) P (3) P (4) 0, 4056
C C
≤ ≤ = + = + =
Vậy xác suất để một kiện được nhận là p = 0,4056.
Bây giờ, kiểm tra 100 kiện. Gọi X là số kiện được nhận trong 100 kiện
được kiểm tra, thì X có phân phối nhị thức X ∼ B(n,p) với n = 100, p =
0,4056. Vì n = 100 khá lớn và p = 0,4056 không quá gần 0 cũng không
quá gần 1 nên ta có thể xem X có phân phối chuẩn như sau:
X ∼ N(μ, σ2)
với μ = np = 100.0,4056 = 40,56;
npq 100.0, 4056.(1 0, 4056) 4, 9101.σ = = − =
a) Xác suất để có 42 kiện được nhận làø:
Printed with FinePrint trial version - purchase at www.fineprint.com
7
1 42 1 42 40,56 1P (X 42) f ( ) f ( ) f (0, 29)
4, 9101 4, 9101 4, 9101
0, 3825 0, 0779 7,79%.
4, 9101
− μ −= = = =σ σ
= = =
(Tra bảng giá trị hàm Gauss ta được f(0,29) = 0,3825).
b) Xác suất để có từ 40 đến 45 kiện được nhận làø
45 40 45 40,56 40 40,56P (40 X 45) ( ) ( ) ( ) ( )
4,9101 4,9101
(0,90) ( 0,11) (0,90) (0,11) 0,3159 0,0438 0,3597 35,97%.
− μ − μ − −≤ ≤ = ϕ − ϕ = ϕ − ϕσ σ
= ϕ − ϕ − = ϕ + ϕ = + = =
(Tra bảng giá trị hàm Laplace ta được ϕ (0,9) = 0,3519; ϕ (0,11) =
0,0438).
c) Xác suất để có ít nhất 42 kiện được nhận làø
100 42 100 40,56 42 40,56P (42 X 100) ( ) ( ) ( ) ( )
4,9101 4,9101
(12) (0,29) 0,50 0,1141 0,3859 38,59%.
− μ − μ − −≤ ≤ = ϕ − ϕ = ϕ − ϕσ σ
= ϕ − ϕ = − = =
(Tra bảng giá trị hàm Laplace ta được ϕ(12) = ϕ(5) = 0,5; ϕ(0,29) =
0,1141).
Bài 2.5: Sản phẩm trong một nhà máy được đóng thành từng kiện, mỗi
kiện gồm 10 sản phẩm Số sản phẩm loại A trong các hộp là X có phân
phối như sau:
X 6 8
P 0,9 0,1
Khách hàng chọn cách kiểm tra như sau: từ mỗi kiện lấy ra 2 sản phẩm;
nếu thấy cả 2 sản phẩm đều loại A thì mới nhận kiện đó; ngược lại thì
loại kiện đó. Kiểm tra 144 kiện (trong rất nhiều kiện).
a) Tính xác suất để có 53 kiện được nhận.
b) Tính xác suất để có từ 52 đến 56 kiện được nhận.
c) Phải kiểm tra ít nhất bao nhiêu kiện để xác suất có ít nhất 1 kiện
được nhận không nhỏ hơn 95%?
8
Lời giải
Trước hết ta tìm xác suất p để một kiện được nhận.
Gọi C là biến cố kiện hàng được nhận. Ta cần tìm p = P(C).
Từ giả thiết ta suy ra có hai loại kiện hàng:
Loại I: gồm 6A, 4B chiếm 0,9 = 90%.
Loại II: gồm 8A, 2B chiếm 0,1 = 10%.
Gọi A1, A2 lần lượt là các biến cố kiện hàng thuộc loại I, II. Khi đó A1,
A2 là một hệ đầy đủ, xung khắc từng đôi và ta có
P(A1) = 0,9; P(A2) = 0,1.
Theo công thức xác suất đầy đủ ta có:
P(C) = P(A1) P(C/A1) + P(A2) P(C/A2).
Theo giả thiết, từ mỗi kiện lấy ra 2 sản phẩm; nếu cả 2 sản phẩm thuộc
loại A thì mới nhận kiện đó. Do đó:
2 0
6 4
1 2 2
10
C C 1P(C / A ) P (2) ;
C 3
= = =
2 0
8 2
2 2 2
10
C C 28P(C / A ) P (2) .
C 45
= = =
Suy ra P(C) = 0,9. (1/3) + 0,1.(28/45) = 0,3622.
Vậy xác suất để một kiện được nhận là p = 0,3622.
Bây giờ, kiểm tra 144 kiện. Gọi X là số kiện được nhận trong 144 kiện
được kiểm tra, thì X có phân phối nhị thức X ∼ B(n,p) với n = 144, p =
0,3622. Vì n = 144 khá lớn và p = 0,3622 không quá gần 0 cũng không
quá gần 1 nên ta có thể xem X có phân phối chuẩn như sau:
X ∼ N(μ, σ2)
với μ = np = 144.0,3622 = 52,1568;
npq 144.0,3622.(1 0, 3622) 5,7676.σ = = − =
a) Xác suất để có 53 kiện được nhận là P(X=53) = 6,84% (Tương tự Bài
21).
b) Xác suất để có từ 52 đến 56 kiện được nhận là P(52 ≤ X ≤ 56) =
26,05% (Tương tự Bài 21).
c) Phải kiểm tra ít nhất bao nhiêu kiện để xác suất có ít nhất 1 kiện
được nhận không nhỏ hơn 95%?
Gọi n là số kiện cần kiểm tra và D là biến cố có ít nhất 1 kiện được nhận.
Yêu cầu bài toán là xác định n nhỏ nhất sao cho P(D) ≥ 0,95.
Printed with FinePrint trial version - purchase at www.fineprint.com
9
Biến cố đối lập của D là D: không có kiện nào được nhận.
Theo chứng minh trên, xác suất để một kiện được nhận là p = 0,3622.
Do đó
Theo công thức Bernoulli ta có:
n n nP(D) 1 P(D) 1 q 1 (1 0, 3622) 1 (0, 6378) .= − = − = − − = −
Suy ra
n
n
P(D) 0, 95 1 (0, 6378) 0, 95
(0, 6378) 0, 05
n ln(0, 6378) ln 0, 05
ln 0, 05n 6, 6612
ln(0, 6378)
n 7.
≥ ⇔ − ≥
⇔ ≤
⇔ ≤
⇔ ≥ ≈
⇔ ≥
Vậy phải kiểm tra ít nhất 7 kiện.
Bài 2.6: Một máy sản xuất sản phẩm với tỉ lệ sản phẩm đạt tiêu chuẩn
là 80% và một máy khác cũng sản xuất loại sản phẩm này với tỉ lệ sản
phẩm đạt tiêu chuẩn là 60%. Chọn ngẫu nhiên một máy và cho sản xuất
100 sản phẩm. Tính xác suất để
a) có 70 sản phẩm đạt tiêu chuẩn.
b) có từ 70 đến 90 sản phẩm đạt tiêu chuẩn.
c) có không ít hơn 70 sản phẩm đạt tiêu chuẩn.
Lời giải
Gọi X là ĐLNN chỉ số sản phẩm đạt tiêu chuẩn trong 100 sản phẩm.
A1, A2 lần lượt là các biến cố chọn được máy 1, máy 2.
Khi đó A1, A2 là một hệ đầy đủ, xung khắc từng đôi và ta có:
P(A1) = P(A2) = 0,5.
Theo công thức xác xuất đầy đủ, với mỗi 0 ≤ k ≤ 100, ta có:
1 1 2 2
1 2
P(X = k) = P(A )P(X=k/A ) + P(A )P(X= k/A )
1 1= P(X=k/A )+ P(X=k/A )
2 2
(1)
Như vậy, gọi X1, X2 lần lượt là các ĐLNN chỉ số sản phẩm đạt tiêu
chuẩn trong trường hợp chọn được máy 1, máy 2. Khi đó:
• (1) cho ta 1 21 1P(X = k) = P(X =k)+ P(X =k)2 2
10
• X1 có phân phối nhị thức X1 ∼ B(n1,p1) với n1 = 100, p1 = 80% =
0,8. Vì n1 = 100 khá lớn và p1 = 0,8 không quá gần 0 cũng không
quá gần 1 nên ta có thể xem X1 có phân phối chuẩn như sau:
X1 ∼ N(μ1, σ12)
với μ1 = n1p1 = 100.0,8 = 80;
1 1 1 1n p q 100.0, 8.0, 2 4.σ = = =
• X2 có phân phối nhị thức X2 ∼ B(n2,p2) với n2 = 100, p2 = 60% =
0,60. Vì n2 = 100 khá lớn và p2 = 0,60 không quá gần 0 cũng
không quá gần 1 nên ta có thể xem X2 có phân phối chuẩn như
sau:
X2 ∼ N(μ2, σ22)
với μ2 = n2p2 = 100.0,60 = 60;
2 2 2 2n p q 100.0, 60.0, 40 4, 8990.σ = = =
a) Xác suất để có 70 sản phẩm đạt tiêu chuẩn là:
1 2
1 2
1 1 2 2
70 701 1 1 1 1 1P(X = 80) = P(X =70)+ P(X =70) = f ( ) f ( )
2 2 2 2
1 1 70 80 1 1 70 60 1 1 1 1= . f ( ) . f ( )= . f ( 2,5) . f (2,04)
2 4 4 2 4,8990 4,8990 2 4 2 4,8990
1 1 1 1= . 0,0175 . 0,0498 0,000727
2 4 2 4,8990
− μ − μ+σ σ σ σ
− −+ − +
+ =
b) Xác suất để có từ 70 đến 90 sản phẩm đạt tiêu chuẩn là:
1 2
1 1 2 2
1 1 2 2
1 1P(70 X 90) = P(70 X 90)+ P(70 X 90)
2 2
90 70 90 701 1= [ ( ) ( )] [ ( ) ( )]
2 2
1 90 80 70 80 1 90 60 70 60= [ ( ) ( )] [ ( ) ( )]
2 4 4 2 4,899 4,899
1= [ (2,5) ( 2,5) (6,12) (2,04)]
2
1= (0,49379 0,
2
≤ ≤ ≤ ≤ ≤ ≤
− μ − μ − μ − μϕ − ϕ + ϕ − ϕσ σ σ σ
− − − −ϕ − ϕ + ϕ − ϕ
ϕ − ϕ − + ϕ − ϕ
+ 49379 0,5 0,47932)
0,50413
+ −
=
c) Xác suất có không ít hơn 70 sản phẩm đạt tiêu chuẩn là
P(70 X 100) =0,5072≤ ≤
(Tương tự câu b)
Bài 2.7: Một máy sản xuất sản phẩm với tỉ lệ phế phẩm là 1% và một
máy khác cũng sản xuất loại sản phẩm này với tỉ lệ phế phẩm là 2%.
Printed with FinePrint trial version - purchase at www.fineprint.com
11
Chọn ngẫu nhiên một máy và cho sản xuất 1000 sản phẩm. Tính xác
suất để
a) có 14 phế phẩm.
b) có từ 14 đến 20 phế phẩm.
Lời giải
Gọi X là ĐLNN chỉ số phế phẩm trong 1000 sản phẩm.
A1, A2 lần lượt là các biến cố chọn được máy 1, máy 2.
Khi đó A1, A2 là một hệ đầy đủ, xung khắc từng đôi và ta có:
P(A1) = P(A2) = 0,5.
Theo công thức xác xuất đầy đủ, với mỗi 0 ≤ k ≤ 100, ta có:
1 1 2 2
1 2
P(X = k) = P(A )P(X=k/A ) + P(A )P(X= k/A )
1 1= P(X=k/A )+ P(X=k/A )
2 2
(1)
Như vậy, gọi X1, X2 lần lượt là các ĐLNN chỉ số phế phẩm trong trường
hợp chọn được máy 1, máy 2. Khi đó:
• (1) cho ta 1 21 1P(X = k) = P(X =k)+ P(X =k)2 2
• X1 có phân phối nhị thức X1 ∼ B(n1,p1) với n1 = 1000 và p1 = 1% =
0,001. Vì n1 khá lớn và p1 khá bé nên ta có thể xem X1 có phân
phân phối Poisson:
X1 ∼ P(a1) với a1 = n1p1 = 1000.0,01 = 10, nghĩa là X2 ∼ P(10).
• X2 có phân phối nhị thức X2 ∼ B(n2,p2) với n2 = 1000 và p2 = 2% =
0,002. Vì n2 khá lớn và p2 khá bé nên ta có thể xem X2 có phân
phân phối Poisson:
X1 ∼ P(a2) với a2 = n2p2 = 1000.0,02 = 20, nghĩa là X2 ∼ P(20).
a) Xác suất để có 14 phế phẩm là:
10 14 20 14
1 2
1 1 1 e 10 1 e 20P(X = 14) = P(X =14)+ P(X =14) = 0,0454
2 2 2 14! 2 14!
− −
+ =
b) Xác suất để có từ 14 đến 20 phế phẩm là:
1 2
20 2010 k 20 k
k 14 k 14
1 1P(14 X 20) = P(14 X 20)+ P(14 X 20)
2 2
1 e 10 1 e 20= 31,35%
2 k! 2 k !
− −
= =
≤ ≤ ≤ ≤ ≤ ≤
+ =∑ ∑
12
Bài 2.8: Một xí nghiệp có hai máy I và II. Trong ngày hội thi, mỗi công
nhân dự thi được phân một máy và với máy đó sẽ sản xuất 100 sản
phẩm. Nếu số sản phẩm loại A không ít hơn 70 thì công nhân đó sẽ được
thưởng. Giả sử đối với công nhân X, xác suất sản xuất được 1 sản phẩm
loại A với các máy I và II lần lượt là 0,6 và 0,7.
a) Tính xác suất để công nhân X được thưởng.
b) Giả sử công nhân X dự thi 50 lần. Số lần được thưởng tin chắc nhất là
bao nhiêu?
Lời giải
Gọi Y là ĐLNN chỉ số sản phẩm loại A có trong 100 sản phẩm được sản
xuất.
A1, A2 lần lượt là các biến cố chọn được máy I, máy II.
Khi đó A1, A2 là một hệ đầy đủ, xung khắc từng đôi và ta có:
P(A1) = P(A2) = 0,5.
Theo công thức xác xuất đầy đủ, với mỗi 0 ≤ k ≤ 100, ta có:
1 1 2 2
1 2
P(Y = k) = P(A )P(Y=k/A ) + P(A )P(Y= k/A )
1 1= P(Y=k/A )+ P(Y=k/A )
2 2
(1)
Như vậy, gọi X1, X2 lần lượt là các ĐLNN chỉ số sản phẩm loại A có
trong 100 sản phẩm được sản xuất trong trường hợp chọn được máy I,
máy II. Khi đó:
• (1) cho ta 1 21 1P(Y = k) = P(X =k)+ P(X =k)2 2
• X1 có phân phối nhị thức X1 ∼ B(n1,p1) với n1 = 100, p1 = 0,6. Vì
n1 = 100 khá lớn và p1 = 0,6 không quá gần 0 cũng không quá gần
1 nên ta có thể xem X1 có phân phối chuẩn như sau:
X1 ∼ N(μ1, σ12)
với μ1 = n1p1 = 100.0,6 = 60;
1 1 1 1n p q 100.0, 6.0, 4 4, 8990.σ = = =
• X2 có phân phối nhị thức X2 ∼ B(n2,p2) với n2 = 100, p2 = 0,7. Vì n2
= 100 khá lớn và p2 = 0,7 không quá gần 0 cũng không quá gần 1
nên ta có thể xem X2 có phân phối chuẩn như sau:
X2 ∼ N(μ2, σ22)
với μ1 = n2p2 = 100.0,7 = 70;
2 2 2 2n p q 100.0,7.0, 3 4,5826.σ = = =
a) Xác suất để công nhân X được thưởng là:
Printed with FinePrint trial version - purchase at www.fineprint.com
13
1 2
1 1 2 2
1 1 2 2
1 1P(70 Y 100) = P(70 X 100)+ P(70 X 100)
2 2
100 70 100 701 1= [ ( ) ( )] [ ( ) ( )]
2 2
1 100 60 70 60 1 100 70 70 70= [ ( ) ( )] [ ( ) ( )]
2 4,899 4,899 2 4,5826 4,5826
1= [ (8,16) (2,04) (6,55) (0)
2
≤ ≤ ≤ ≤ ≤ ≤
− μ − μ − μ − μϕ − ϕ + ϕ − ϕσ σ σ σ
− − − −ϕ − ϕ + ϕ − ϕ
ϕ − ϕ + ϕ − ϕ 1]= (0,5 0,47932 0,5) 0,2603
2
− + =
b) Giả sử công nhân X dự thi 50 lần. Số lần được thưởng tin chắc nhất là
bao nhiêu?
Gọi Z là ĐLNN chỉ số lần công nhân X được thưởng. Khi đó Z có
phân phối nhị thức Z ∼ B(n,p) với n = 50, p = 0,2603. Số lần được
thưởng tin chắc nhất chính là Mod(Z). Ta có:
Mod(Z) k np q k np q 1
50.0,2603 0,7397 k 50.0,2603 0,7397 1
12,2753 k 13,2753 k 13
= ⇔ − ≤ ≤ − +
⇔ − ≤ ≤ − +
⇔ ≤ ≤ ⇔ =
Vậy số lần được thưởng tin chắc nhất của công nhân X là 13 lần.
Bài 2.9: Trong ngày hội thi, mỗi chiến sĩ sẽ chọn ngẫu nhiên một trong
hai loại súng và với khẩu súng chọn được sẽ bắn 100viên đạn. Nếu có từ
65 viên trở lên trúng bia thì được thưởng. Giả sử đối với chiến sĩ A, xác
suất bắn 1 viên trúng bia bằng khẩu súng loại I là 60% và bằng khẩu
súng loại II là 50%.
a) Tính xác suất để chiến sĩ A được thưởng.
b) Giả sử chiến sĩ A dự thi 10 lần. Hỏi số lần được thưởng tin chắc nhất
là bao nhiêu?
c) Chiến sĩ A phải tham gia hội thi ít nhất bao nhiêu lần để xác suất có
ít nhất một lần được thưởng không nhỏ hơn 98%?
Lời giải
Gọi X là ĐLNN chỉ số viên trúng trong 100 viên được bắn ra.
Gọi A1, A2 lần lượt là các biến cố chọn được khẩu súng loại I, II.
Khi đó A1, A2 là một hệ đầy đủ, xung khắc từng đôi và ta có:
P(A1) = P(A2) = 0,5.
Theo công thức xác xuất đầy đủ, với mỗi 0 ≤ k ≤ 100, ta có:
14
1 1 2 2
1 2
P(X = k) = P(A )P(X=k/A ) + P(A )P(X= k/A )
1 1= P(X=k/A )+ P(X=k/A )
2 2
(1)
Như vậy, gọi X1, X2 lần lượt là các ĐLNN chỉ số viên trúng trong 100
viên được bắn ra trong trường hợp chọn được khẩu loại I, II. Khi đó:
• (1) cho ta 1 21 1P(X = k) = P(X =k)+ P(X =k)2 2
• X1 có phân phối nhị thức X1 ∼ B(n1,p1) với n1 = 100, p1 = 0,6. Vì n1
= 100 khá lớn và p1 = 0,6 không quá gần 0 cũng không quá gần 1
nên ta có thể xem X1 có phân phối chuẩn như sau:
X1 ∼ N(μ1, σ12)
với μ1 = n1p1 = 100.0,6 = 60;
1 1 1 1n p q 100.0, 6.0, 4 4, 8990.σ = = =
• X2 có phân phối nhị thức X2 ∼ B(n2,p2) với n2 = 100, p2 = 0,5. Vì n2
= 100 khá lớn và p2 = 0,5 không quá gần 0 cũng không quá gần 1
nên ta có thể xem X2 có phân phối chuẩn như sau:
X2 ∼ N(μ2, σ22)
với μ1 = n2p2 = 100.0,5 = 50;
2 2 2 2n p q 100.0,5.0,5 5.σ = = =
a) Xác suất để chiến sĩ A được thưởng là:
1 2
1 1 2 2
1 1 2 2
1 1P(65 X 100) = P(65 X 100)+ P(65 X 100)
2 2
100 65 100 651 1= [ ( ) ( )] [ ( ) ( )]
2 2
1 100 60 65 60 1 100 50 65 50= [ ( ) ( )] [ ( ) ( )]
2 4,899 4,899 2 5 5
1 1= [ (8,16) (1,02) (10) (3)]= (0,5 0,3
2 2
≤ ≤ ≤ ≤ ≤ ≤
− μ − μ − μ − μϕ − ϕ + ϕ − ϕσ σ σ σ
− − − −ϕ − ϕ + ϕ − ϕ
ϕ − ϕ + ϕ − ϕ − 4614 0,5 0,49865) 0,0776.+ − =
b) Giả sử chiến sĩ A dự thi 10 lần. Số lần được thưởng tin chắc nhất là
bao nhiêu?
Gọi Y là ĐLNN chỉ số lần chiến sĩ A được thưởng. Khi đó Y có phân
phối nhị thức Y ∼ B(n,p) với n = 10, p = 0,0776. Số lần được thưởng tin
chắc nhất chính là mod(Y). Ta có:
mod(Y) k np q k np q 1
10.0,0776 0,9224 k 10.0,0776 0,9224 1
0,1464 k 0,8536 k 0
= ⇔ − ≤ ≤ − +
⇔ − ≤ ≤ − +
⇔ − ≤ ≤ ⇔ =
Printed with FinePrint trial version - purchase at www.fineprint.com
15
Vậy số lần được thưởng tin chắc nhất của chiến sĩ A là 0 lần, nói cách
khác, thường là chiến sĩ A không được thưởng lần nào trong 10 lần tham
gia.
c) Chiến sĩ A phải tham gia hội thi ít nhất bao nhiêu lần để xác suất có
ít nhất một lần được thưởng không nhỏ hơn 98%?
Gọi n là số lần tham gia hội thi và D là biến cố có ít nhất 1 lần được
thưởng. Yêu cầu bài toán là xác định n nhỏ nhất sao cho P(D) ≥ 0,98.
Biến cố đối lập của D là D: không có lần nào được thưởng.
Theo chứng minh trên, xác suất để một lần được thưởng là p = 0,0776.
Do đó
Theo công thức Bernoulli ta có:
n n nP(D) 1 P(D) 1 q 1 (1 0, 0776) 1 (0, 9224) .= − = − = − − = −
Suy ra
n
n
P(D) 0, 98 1 (0, 9224) 0, 98
(0, 9224) 0, 02
n ln 0, 9224 ln 0, 02
ln 0, 02n 48, 43
ln 0, 9224
n 49.
≥ ⇔ − ≥
⇔ ≤
⇔ ≤
⇔ ≥ ≈
⇔ ≥
Vậy chiến sĩ A phải tham gia hội thi ít nhất là 49 lần.
Bài 2.10: Một người thợ săn bắn 4 viên đạn. Biết xác suất trúng đích
của mỗi viên đạn bắn ra là 0,8. Gọi X là đại lượng ngẫu nhiên chỉ số viên
đạn trúng đích.
a) Tìm luật phân phối của X.
b) Tìm kỳ vọng và phương sai của X.
Lời giải
a) Ta thấy X có phân phối nhị thức X∼ B(n,p) với n = 4, p = 0,8. X là
ĐLNN rời rạc nhận 5 giá trị: 0, 1, 2, 3 , 4. Luật phân phối của X có dạng:
X 0 1 2 3 4
P p0 p1 p2 p3 p4
16
Theo công thức Bernoulli ta có:
0 0 4
4
1 1 3
4
2 2 2
4
3 3 1
4
4 4 0
4
P(X 0) (0, 8) (0, 2) 0, 0016;
P(X 1) (0, 8) (0, 2) 0, 0256;
P(X 2) (0, 8) (0, 2) 0,1536;
P(X 3) (0, 8) (0, 2) 0, 4096;
P(X 4) (0, 8) (0, 2) 0, 4096.
C
C
C
C
C
= = =
= = =
= = =
= = =
= = =
Vậy luật phân phối của
File đính kèm:
- baigiai_xacsuat_chuong2_2511.pdf