A. MỤC TIÊU:
- Kiến thức : + Hệ thống các kiến thức cơ bản của chương III và IV về tam giác đồng dạng và hình lăng trụ đứng, hình chóp đều.
+ Luyện tập các bài tập về các loại tứ giác , tam giác đồng dạng, hình lăng trụ đứng, hình chóp (câu hỏi tìm điều kiện, chứng minh, tính toán).
- Kỹ năng : Thấy được sự liên hệ giữa các kiến thức đã học với thực tế.
- Thái độ : Góp phần rèn luyện tư duy cho HS.
B. CHUẨN BỊ CỦA GV VÀ HS:
- GV: + Bảng hệ thống kiến thức về định lí Ta lét, tam giác đồng dạng, hình lăng trụ đứng, hình chóp đều viết sẵn trên bảng phụ.
+ Ghi sẵn đề bài và hình vẽ của một số bài tập. Bài giải mẫu.
+ Thước kẻ, com pa, phấn màu.
- HS : + Chuẩn bị các câu hỏi ôn tập cuối năm (GV cho) và các bài tập ôn cuối năm.
7 trang |
Chia sẻ: luyenbuitvga | Lượt xem: 1039 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Giáo án môn Hình học 8 (chuẩn) - Tiết 68, 69, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Tiết 68 + 69: ôn tập cuối năm
Soạn :
Giảng:
A. mục tiêu:
- Kiến thức : + Hệ thống các kiến thức cơ bản của chương III và IV về tam giác đồng dạng và hình lăng trụ đứng, hình chóp đều.
+ Luyện tập các bài tập về các loại tứ giác , tam giác đồng dạng, hình lăng trụ đứng, hình chóp (câu hỏi tìm điều kiện, chứng minh, tính toán).
- Kỹ năng : Thấy được sự liên hệ giữa các kiến thức đã học với thực tế.
- Thái độ : Góp phần rèn luyện tư duy cho HS.
B. Chuẩn bị của GV và HS:
- GV: + Bảng hệ thống kiến thức về định lí Ta lét, tam giác đồng dạng, hình lăng trụ đứng, hình chóp đều viết sẵn trên bảng phụ.
+ Ghi sẵn đề bài và hình vẽ của một số bài tập. Bài giải mẫu.
+ Thước kẻ, com pa, phấn màu.
- HS : + Chuẩn bị các câu hỏi ôn tập cuối năm (GV cho) và các bài tập ôn cuối năm.
+ Thước kẻ, com pa, ê ke.
C. Tiến trình dạy học:
- ổn định tổ chức lớp, kiểm tra sĩ số HS
- Kiểm tra việc làm bài tập ở nhà và việc chuẩn bị bài mới của HS.
Hoạt động của GV
Hoạt động của HS
Hoạt động I
ôn tập về tam giác đồng dạng
I. Lý thuyết:
1) Phát biểu định lí Ta lét
- Thuận.
- Đảo.
- Hệ quả.
GV đưa lên bảng phụ.
HS phát biểu định lí Ta lét.
(như SGK)
a) Định lí Ta lét thuận và đảo
A
DABC
B' C' a Û
a // BC
B C
b) Hệ quả của định lí Ta lét
C' B' a
A A
B C A
B' C'
a
B C B' C' B C
DABC
ị
a // BC
2) Phát biểu định lí về tính chất đường phân giác trong tam giác.
GV đưa lên bảng phụ:
AD là tia phân giác BAC
AE là tia phân giác BAx
ị
3) Tam giác đồng dạng:
a) Định nghĩa hai tam giác đồng dạng.
b) Các định lí về tam giác đồng dạng:
- Định lí Tr.71 SGK về tam giác đồng dạng.
- Trường hợp đồng dạng thứ nhất của hai tam giác (c.c.c)
- Trường hợp đồng dạng thứ hai của hai tam giác (c.g.c).
- Trường hợp đồng dạng thứ ba của hai tam giác (g.g)
- Trường hợp đồng dạng đặc biệt của hai tam giác vuông.
A
A'
M N
B C B' C'
B
B'
A C A' C'
Hình vẽ sẵn đưa lên bảng phụ.
II. Bài tập
Bài 1: Cho tam giác ABC, các đường cao BD, CE cắt nhau tại H. Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở K. Gọi M là trung điểm của BC.
a) Chứng minh
DADB DAEC.
b) Chứng minh
HE . HC = HD . HB
c) Chứng minh H, M, K thẳng hàng.
d) Tam giác ABC phải có điều kiện gì thì tứ giác BHCK là hình thoi ? là hình chữ nhật ?
GV vẽ hình minh hoạ câu d).
E D
B C
K
A º H
B C
K
Bài 8 tr.133 SGK.
(Đề bài và hình vẽ đưa lên bảng phụ).
B
B'
C
A C'
Bài 7 tr.152 SBT.
(Đề bài đưa lên bảng phụ)
Một tam giác có độ dài ba cạnh là 6 cm, 8 cm và 13 cm. Một tam giác khác đồng dạng với tam giác đã cho có độ dài ba cạnh là 12 cm, 9 cm và x cm. Độ dài x là:
A. 17,5 cm B. 15 cm
C. 17 cm D. 19,5 cm.
Hãy chọn câu trả lời đúng.
HS phát biểu định lí.
x
A
E B D C
HS lần lượt phát biểu các định lí và nêu tóm tắt định lí dưới dạng kí hiệu.
+ MN // BC ị DAMN DABC.
+
ị DA'B'C' DABC.
+ và A' = A
ị DA'B'C' DABC.
+ A' = A và B' = B
ị DA'B'C' DABC.
+ DABC (A = 900)
DA'B'C' (A' = 900)
và
ị DA'B'C' DABC.
Bài 1: GV yêu cầu HS lên vẽ hình.
A
E D
B C
K
HS chứng minh:
a) Xét DADB và DAEC có:
D = E = 900 (gt)
A chung
ị DADB DAEC (gg).
b) Xét DHEB và DHDC có:
E = D = 900 (gt)
EHB = DHC (đối đỉnh)
ị DHEB DHDC (gg)
ị
ị HE . HC = HD . HB.
c) Tứ giác BHCK có:
BH // KC (cùng ^ AC)
CH // KB (cùng ^ AB)
ị Tứ giác BHCK là hình bình hành.
ị HK và BC cắt nhau tại trung điểm mỗi đường.
ị H, M, K thẳng hàng.
d) Hình bình hành BHCK là hình thoi Û HM ^ BC.
Vì AH ^ BC (tính chất ba đường cao) ị HM ^ BC Û A,H,M thẳng hàng Û DABC cân ở A.
* Hình bình hành BHCK là hình chữ nhật Û BCK = 900 Û BAC = 900 (Vì tứ giác ABKC đã có B = C = 900)
Û DABC vuông ở A.
Bài 8: HS trình bày miệng.
DABC DAB'C'.
ị
ị
hay
ị B'B = (m).
Bài 7:
- Kết quả. Độ dài x là D. 19,5 cm vì
ị x = (cm)
Hoạt động 2
ôn tập về hình lăng trụ đứng - hình chóp đều
I. lý thuyết
1) Thế nào là lăng trụ đứng ? Thế nào là lăng trụ đều ?
Nêu công thức tính Sxq , Stp, V của hình lăng trụ đứng.
2) Thế nào là hình chóp đều ?
Nêu công thức tính Sxq , Stp, V của hình chóp đều.
II. bài tập
Bài 10 tr.133 SGK.
(Đề bài đưa lên bảng phụ).
B C
12
A
16 D
25 B' C'
A' D'
GV yêu cầu một HS lên bảng làm.
Bài 11 tr.133 SGK.
S
24
C
H
A 20 D
(Đề bài và hình vẽ đưa lên bảng phụ)
Chú ý: Nếu thiếu thời gian, GV nêu hướng giải rồi đưa ra bài giải mẫu cho HS tham khảo.
HS trả lời câu hỏi.
1) Khái niệm lăng trụ đứng, lăng trụ đều.
Sxq = 2ph
Với p là nửa chu vi đáy
h là chiều cao
Stp = Sxq + 2Sđ
V = Sđ . h
2) Khái niệm về hình chóp đều
Sxq = p . d
Với p là chu vi đáy.
d là trung đoạn.
Stp = Sxq + Sđ.
V = Sđ. h.
Với h là chiều cao hình chóp.
Bài 10:
a) HS trả lời miệng
Xét tứ giác ACC'A có:
AA' // CC' (cùng // DD')
AA' = CC' (= DD' )
ị ACC'A' là hình bình hành.
Có AA' ^ (A'B'C'D').
ị AA' ^ A'C' ị AA'C' = 900
Vậy ACC'A' là hình chữ nhật.
Chứng minh tương tự
ị BDB'D' là hình chữ nhật.
b) Trong tam giác vuông ACC' có:
AC'2 = AC2 + CC'2 (đ/l Pytago)
= AC2 + AA'2.
Trong tam giác vuông ABC có:
AC2 = AB2 + BC2 = AB2 + AD2
Vậy AC'2 = AB2 + AD2 + AA'2.
c) Sxq = 2 (12 + 16). 25
= 1400 (cm2)
Sđ = 12 . 16 = 192 (cm2)
STP = Sxq + 2Sđ
= 1400 + 2 . 192 = 1784 (cm2)
V = 12 . 16 . 25 = 4800 (cm3).
Bài 11:
a) Tính chiều cao SO.
Xét tam giác vuông ABC có:
AC2 = AB2 + BC2 = 202 + 202
AC2 = 2. 202 ị AC = 20.
Xét tam giác vuông SAO có
SO2 = SA2 - AO2.
SO2 = 242 - (10
SO2 = 376
ị SO ằ 19,4 (cm).
ã V = Sđ. h
= . 202. 19,4
ằ 2586,7 (cm3)
b) Gọi H là trung điểm của CD
ị SH ^ CD (t/c tam giác cân)
Xét tam giác vuông SHD:
SH2 = SD2 - DH2
= 242 - 102 = 476
ị SH ằ 21,8 (cm)
Sxq = . 80 . 21,8 ằ 872 (cm2)
STP = 872 + 400 = 1272 (cm2)
Hoạt động 3
Hướng dẫn về nhà
Ôn tập lý thuyết chương III và chương IV.
Làm các bài tập 1, 2, 4, 5, 6, 7, 9 tr.132, 133 SGK.
Chuẩn bị kiểm tra học kỳ môn Toán
(Gồm đại số và hình học).
D. rút kinh nghiệm:
File đính kèm:
- T68-69~1.DOC