Mục tiêu :
* Kiến thức : - Giúp học sinh nắm được khái niệm mặt phẳng. Điểm thuộc mặt phẳng, hình biểu diễn của một hình trong không gian, các tính chất hay các tiên đề thứa nhận, các cách xác định một mặt phẳng, hình chóp, hình tứ diện.
* Kỹ năng : Xác định được mặt phẳng trong không gian, một số hìh chóp và hình tứ diện, biểu diễn một hình trong không gian.
* Thái độ : Liên hệ được với nhiều vấn đề có trong thực tế với bài học, có nhiều sng1 tạo trong hình học, hứng thú , tích cự c phát huy tính độc lập trong học tậ.
62 trang |
Chia sẻ: manphan | Lượt xem: 6567 | Lượt tải: 2
Bạn đang xem trước 20 trang mẫu tài liệu Giáo án môn Hình học lớp 11 - Đại cương về đường thẳng và mặt phẳng, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
CHƯƠNG II
ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN QUAN HỆ SONG SONG
§1 ĐẠI CƯƠNG VỀ ĐƯỜNG THẲNG VÀ MẶT PHẲNG
I. Mục tiêu :
* Kiến thức : - Giúp học sinh nắm được khái niệm mặt phẳng. Điểm thuộc mặt phẳng, hình biểu diễn của một hình trong không gian, các tính chất hay các tiên đề thứa nhận, các cách xác định một mặt phẳng, hình chóp, hình tứ diện.
* Kỹ năng : Xác định được mặt phẳng trong không gian, một số hìh chóp và hình tứ diện, biểu diễn một hình trong không gian.
* Thái độ : Liên hệ được với nhiều vấn đề có trong thực tế với bài học, có nhiều sng1 tạo trong hình học, hứng thú , tích cự c phát huy tính độc lập trong học tậ.
II. Phương pháp dạy học :
*Diễn giảng, gợi mở vấn đáp và hoạt động nhóm.
III. Chuẩn bị của GV - HS :
Bảng phụ hình vẽ 2.1 đến 2.25 trong SGK, thước , phấn màu . . .
III. Tiến trình dạy học :
1. Giới thiệu chương II : Trước đây chúng ta nghiên cứu các tính chất của những hình nằm trong mặt phẳng. Môn học nghiên cứu các tính chất của hình nằm trong mặt phẳng gọi là hình học phẳng, trong thực tế những vật ta thướng gặp như : hộp phấn, kệ sách, bàn học . . . là hình trong không gian. Môn học nghiên cứu các tính chất của các hình trong không gian được gọi là Hình học không gian.
2. Vào bài mới :
Hoạt động 1: I. KHÁI NIỆM MỞ ĐẦU
Hoạt động của giáo viên và Học sinh
Nội dung
I. Khái niệm mở đầu
+ Gv nêu một số hình ảnh về mặt phẳng.
+ GV nêu cách biểu diễn mặt phẳng trong không gian và kí hiệu mặt phẳng.
+Gv cho HS quan sát hình vẽ và giải thích cho học sinh về các quan hệ thuộc trong không gian: như điểm thuộc mặt phẳng, điểm không thuộc mặt phẳng , và đường thẳng nằm trên mặt phẳng, đường thẳng không nằm trên mặt phẳng
+ GV nêu một vài hình vẽ của hình biểu diễn của một hình trong không gian
+ Quan sát hình vẽ trong SGK và yêu cầu HS đưa ra kết luận
+ GV cho HS thực hiện D1
I. Khái niệm mở đầu
1). Mặt phẳng
Mặt bàn , mặt bảng, mặt hồ nước yên lặng . . . Cho ta hinh ảnh của một phần của mặt phẳng.
Để biểu diễn mặt phẳng ta thường dùng hình bình hành hay một miền góc và ghi tên của mặt phẳng vào một góc của hình biểu diễn.
P
Để kí hiệu mặt phẳng, ta thường dùng chữ cái in hoa hoặc chữ cái Hi Lạp đặt trong dấu ( ).
Ví dụ : mặt phẳng (P ), mặt phẳng ( Q ), mặt phẳng (a), mặt phẳng (b) hoặc viết tắt là mp( P ), mp( Q ), mp (a) , mp ( b) , hoặc ( P ) , ( Q ) , (a) , ( b),
2. Điểm thuộc mặt phẳng
Cho điểm A và mặt phẳng (P).
P
A
* Điểm A thuộc mặt phẳng (P) ta nói A nằm trên (P) hay (P) chứa A, hay (P) đi qua A và kí hiệu A Î ( P) . P
A
* Điểm A không thuộc mặt phẳng (P) ta nói điểm A nằm ngoài (P) hay (P) không chứa A và kí hiệu A Ï ( P) .
3. Hình biểu diễn của một hình không gian
Để vẽ hình biểu diễn của một hình trong không gian , ta dựa vào những qui tắc sau :
* Hình biểu diễn của đường thẳng là đường thẳng, của đoạn thẳng là đoạn thẳng.
* Hình biểu diễn của hai đường thẳng song song là hai đường thẳng song song, hai đường thẳng cắt nhau là hai đường thẳng cắt nhau.
* Hình biểu diễn phải giữ nguyên quan hệ thuộc giữa điểm và đường thẳng.
* Dùng nét vẽ liền để biểu diễn cho đường nhìn thấy và nét đứt đoạn biểu diễn cho đường bị che khuất.
Hoạt động 2 : II. CÁC TÍNH CHẤT THỪA NHẬN
Hoạt động của giáo viên và Học sinh
Nội dung
+ Có bao nhiêu đường thẳng đi qua hai điểm phân biệt.
+ Có bao nhiêu mặt phẳng đi qua ba điểm phân biệt.
+ Cho hình bình hành ABCD, AC cắt BD tại O. Điểm A có thuộc đường thẳng OC hay không?
Nêu kết luận.
+ GV cho HS thực hiện D2
+ Nếu mặt bàn không phẳng thì thước thẳng có nằm trọn trên mặt bàn tại mọi vị trí không ?
+ Nếu thước nằm trọn trên mặt bàn tịa mọi vị trí thì mặt bàn có phẳng không?
+ GV cho HS thực hiện D3
+ Điểm M có thuộc BC không ? Vì sao.
+ M có thuộc mặt phẳng(ABC) không ? Vì sao.
+ GV cho HS thực hiện 4
+ Điểm I thuộc đường thẳng nào?
+ Điểm I có thuộc mặt phẳng (SBD) không?
+ Điểm I thuộc đường thẳng nào khác BD ?
+ Điểm I có thuộc mặt phẳng (SAC ) không?
+ GV cho HS thực hiện 5
+ Nhận xét gì về 3 điểmM, L , K
+ 3 điểm d có thuộc mặt phẳng nào khác ?
+ Ba điểm này có quan hệ như thế nào ?
1. Tính chất 1: Có một và chỉ một đường thẳng đi qua hai điểm phân biệt
2. Tính chất 2: Có một và chỉ một mặt phẳng đi qua ba điểm không thẳng hàng.
Kí hiệu: mp ( ABC) hoặc ( ABC )
3. Tính chất 3: Nếu một đường thẳng có hai điểm phân biệt thuộc mặt phẳng thì mọi điểm của đường thẳng đều thuộc mặt phẳng đó .
* Nếu mọi điểm của đường thẳng d đều thuộc mặt phẳng (P ) thì ta nói đường thẳng d nằm trong mặt phẳng ( P ) . Hay ( P ) chứa d và kí hiệu d Ì ( P ) hay ( P ) É d
4. Tính chất 4 : Tồn tại bốn điểm không cùng thuộc một mặt phẳng
Nếu có nhiều điểm cùng thuộc một mp thì ta nói những điểm đó đồng phẳng .
5. Tính chất 5 : Nếu hai mặt phẳng phân biệt có một điểm chung thì chúng còn có một điểm chung khác nữa.
* Nếu hai mặt phẳng phân biệt có một điểm chung thì chúng có một đường thẳng chung đi qua điểm chung ấy.
* Đường thẳng chung d của hai mặt phẳng phân biệt ( P ) và ( Q ) được gọi là giao tuyến của ( P) và ( Q )
kí hiệu d = ( p) Ç ( Q )
6. Tính chất 6 : Trên mỗi mặt phẳng, các kết quả đã biết trong hình học phẳng đều đúng.
Hoạt động 3 : III. CÁCH XÁC ĐỊNH MỘT MẶT PHẲNG
Hoạt động của giáo viên và Học sinh
Nội dung
1. Ba cách xác định mặt phẳng
+ Qua ba điểm không thẳng hàng xác định được bao nhiêu mặt phẳng?
+ Cho đường thẳng d và điểm A không thuộc đường thẳng d. có thể xác định được bao nhiêu mặt phẳng?.
+ Hai đường thẳng cắt nhau xác định được ao nhiêu mặt phẳng?
2. Một số ví dụ
GV cho HS đọc và tóm tắt đề bài, treo hình 2.20 và hướng dẫn giải theo các câu hỏi sau :
+ Ba điểm A, M , B quan hệ như thế nào ?
+ N có phải là trung điểm của AC không?
+ Hãy xác định các giao tuyến theo đề bài.
GV cho HS đọc và tóm tắt đề bài, treo hình 2.21 và hướng dẫn giải theo các câu hỏi sau :
+ Ba điểm M, N , I thuộc mặt phẳng nào ?
+ M, N, I thuộc mặt phẳng nò khác ?
+ Nêu mối quan hệ giưã M , N , I. Kết luận
GV cho HS đọc và tóm tắt đề bài, treo hình 2.22 và hướng dẫn giải theo các câu hỏi sau :
+ I, J, H thuộc mặt phẳng nào ?Vì sao ?
GV cho HS đọc và tóm tắt đề bài, treo hình 2.23 và hướng dẫn giải theo các câu hỏi sau
+ K và G thuộc mặt phẳng nào?
+ J và D thuộc mp nào?
+ J và D thuộc mặt phẳng nào?
1. Ba cách xác định mặt phẳng
* Qua 3 điểm không thẳng hàng xác định duy nhất một mặt phẳng.
* Qua một điểm và một đường thẳng không chứa điểm đó ta xác định duy nhất một mặt phẳng. Kí hiệu mp(A,d) hay ( A,d)
* Hai đường thẳng cắt nhau xác định duy nhất một mặt phẳng. Kí hiệu mp ( a, b) hay ( a, b )
2. Một số ví dụ
Ví dụ 1
Điểm D và điểm M cùng thuộc hai mặt phẳng (DMN ) và ( ABC ) nên giao tuyến của hai mặt phẳng đó là đường thẳng DM.
Ví dụ 2
Gọi I là giao điểm củaq đường thẳng AB và mặt phẳng( Ox;Oy). Vì AB và mặt phẳng(Ox;Oy) cố định nên I cố định. Vì M, N, I là các điểm chung của mp(a ) và mp (Ox;Oy) nên chúng luôn thẳng hàng. Vậy đường thẳng MN luôn đi qua điểm cố định khi (a ) thay đổi.
Ví dụ 3 :
Ta có J là điểm chung của hai mặt phẳng (MNK) và (BCD).
Thật vậy ta có JÎ MK , mà MK Ì (MNK) Þ JÎ (MNK)
và JÎ BD , mà BD Ì (BCD) Þ JÎ (BCD)
Lí luận tương tự ta có I, H củng là điểm chung của hai mặt phẳng (MNK) và ( BCD).
Vậy I,J, H nằm trên đường giao tuyến của hai mặt phẳng(MNK) và ( BCD) nêm I, J , H thẳng hàng.
Ví dụ 4 :
Gọi J là giao điểm của AG và BC. Trong mp(AJD) nên GK và JD cắt nhau. Gọi L lkà giao điểm của GK và JD.
Ta có LÎ JD , mà JD Ì (BCD) Þ LÎ (BCD)
Vậy L là giao điểm của GK và (BCD)
* Nhân xét để tìm giao điểm của đường thẳng với mặt phẳng ta có thể đưc về việc tìm giao điểm củaq đường thẳng đó với một đường thẳng nằm trong mặt phẳng đã cho
Hoạt động 4 : IV. HÌNH CHÓP VÀ HÌNH TỨ DIỆN
Hoạt động của giáo viên và Học sinh
Nội dung
Gv giới thiệu các mô hình về hình chóp và hình từ diện. Yêu cầu học sinh đọc ở SGK
GV cho học sinh thức hiện D6
Hãy kể tên các mặt bên , cạnh bên , cạnh đáy của hình chóp ở hinh2 2.24
GV cho học sinh thức hiện ví dụ 5
Hình gồm miền đa giác A1A2A3. . .An. Lấy điểm S nằm ngoài (a) . lần lượt nối S với các đỉnh A1, A2, An ta được n tam gíác SA1A2 , SA2A3 . . . SAnA1. Hình gồm đa giác A1A2A3. . .An và n tam giác SA1A2 , SA2A3 . . . SAnA gọi là hình chóp, kí hiệu là S. A1A2A3. . .An. ta gọi S là đỉnh và đa giác A1A2A3. . .An là mặt đáy. Các tam giác SA1A2 , SA2A3 . . . SAnA gọi l2 các mặt bên. Các đoạn SA1, SA2 . . SAn là các cạnh bên., các cạnh của đa giác đáy gọi là cạnh đáy của hình chóp.
Một hình chóp có đáy là tam giác gọi là tứ diện. Tứ diện có các mặt là tam giác đều gọi là tứ diện đều.
Ví dụ 5:
Đường thẳng MN cat1 đường thẳng BC và CD lần lượt tại K và L.
Gọi E là giao điểm của PK và SB, F là giao điểm của PL và SD. Ta có giao điểm của ( MNP) với các cạnh SB,SC,SD lần lượt là E,P,F
(MNP) Ç (ABCD) = MN
(MNP) Ç ( SAB) = EM
(MNP) Ç ( SBC) = EP
( MNP) Ç ( SCD) = PF
( MNP) Ç ( SAD) = FN
* Ta gọi đa giác MEPFN là thiết diện của hình chóp S.ABCD khi cắt bởi mặt phẳng ( MNP)
4. Củng cố : Từng phần
5. Hướng dẫn về nhà : Làm bài tập 1,2, . . . 10 SGK trang 53 – 54.
Soạn ngày 4 tháng 11 năm 2009
Cụm tiết PPCT : 13,14
Tuần : 12
Tiết PPCT :14
LUYỆN TẬP VỀ ĐẠI CƯƠNG VỀ ĐƯỜNG THẲNG VÀ MẶT PHẲNG
I. Mục tiêu :
* Kiến thức : Giúp học sinh nắm được cách tìm giao tuyến của hai mặt phẳng, Tìm giao điểm của đường thẳng với mặt phẳng.
* Kỹ năng : Xác định được mặt phẳng trong không gian, vẽ được các hình trong không gian và kỷ năng giải toán về tìm giao điểm của đường thẳng với mặt phẳng , giao tuyến của hai mặt phẳng và các bài toán có liên quan đến mặt phẳng.
* Thái độ : Liên hệ được với nhiều vấn đề có trong thực tế với bài học, có nhiều sáng tạo trong hình học, hứng thú , tích cự c phát huy tính độc lập trong học tập.
II. Phương pháp dạy học :
*Diễn giảng, gợi mở vấn đáp và hoạt động nhóm.
III. Chuẩn bị của GV - HS :
Bảng phụ hình vẽ trong các bài tập ở SGK, thước , phấn màu . . .
III. Tiến trình dạy học :
1. On định tổ chức :
2. Kiểm tra bài củ : Nêu các tính chất thứa nhận. Nêu cách tìm giao tuyến của hai mặt phẳng. Cách tìm giao điểm của đường thẳng với mặt phẳng.
2. Vào bài mới :
Hoạt động của giáo viên và Học sinh
Nội dung
+ Gv gọi hS lên bảng vẽ hình và trình bày bài giải, cả lớp quan sát và nêu nhận xét. GV trình bày lại cách giải
Tìm đường thẳng d’ nằm trong (a) mà cắt d tại I, ta có ngay I là giao điểm của d và (a )
Bài 1 :a). Ta có E ,F Î ( ABC)
b).
Bài 2 : ta có M Î ( a). Gọi ( b) là mặt phẳng bất kỳ chứa d , nên
Vậy M là điểm chung của ( a).và ( b) chừa đường thẳng d
Bài 3 : Gọi d1 , d2 và d3 là ba đường thẳng đã cho. Gọi I = Ta phải chứng minh I
Ta có
Từ đó suy ra
Bài 4 : Gọi I là trung điểm của CD.
Ta có GA Î BI. GBÎ AI
Gọi G =
Mà nên GAGB // AB và
Tương tự ta có CGC và DGD cũng cắt AGA tại G’ , G’’ và . Như vậy G º G’ºG’’ . Vậy AGA ; BGB ; CGC ; DGD đồng qui.
Bài 5 :
a). Gọi E= ABÇCD.
Ta có (MAB) Ç(SCD) = ME
Gọi N= ME ÇSD. Ta có N = SD Ç(MAB).
b). Gọi I = AMÇBN
Ta có I = AM ÇBN , AMÌ ( SAC) ;
BN Ì (SBD) ; ( SAC) Ç(SBD) = SO
Do đó I Î SO
Bài 6 a). Gọi E = CD ÇNP
Ta có E là điểm chung cần tìm
b). (ACD) Ç(MNP) = ME
Bài 7 : a). (IBC) Ç(KAD)=KI
b). Gọi E = MDÇBI
F= NDÇCI ta có EF=(IBC) Ç(DMN)
Bài 8 :a).(MNP) Ç(BCD) =EN
b). Gọi Q=BCÇEN ta có BCÇ(PMN) = Q
Bài 9: a). Gọi M=AEÇDC
Ta có M=DCÇ(C’AE)
b). Gọi F=MC’ÇSD. Thiết diện cần tìm là tứ giác AEC’F
Bài 10 : a). Gọi N = SMÇCD.
Ta có N = CDÇ(SBM)
b). Gọi O= ACÇBN
Ta có (SBM) Ç(SAC) = SO
c). Gọi I = SO ÇBM. Ta có I = BMÇ(SAC)
d0. Gọi R=ABÇCD
P=MRÇSC, ta có P= SCÇ(ABM)
Vậy PM=(CSD) Ç(ABM).
4. Củng cố : Từng phần
5. Hướng dẫn về nhà : Xem bài “ Hai đường thẳng chéo nhau và hai đường thẳng song song”
Soạn ngày 11 tháng 11 năm 2009
Cụm tiết PPCT : 15,16
Tuần : 13
Tiết PPCT : 15
HAI ĐƯỜNG THẲNG CHÉO NHAU, SONG SONG
I.Mục đích yêu cầu:
1)Nắm được khái niệm hai đường thẳng song song va hai đường thẳng chéo nhau trong không gian
2) Biết sử dụng các định lí :
- Qua một điểm không thuộc một đường thẳng cho trước có một và chỉ một đường thẳng song song với đường thẳng đã cho .
- Định lí về giao tuyến của ba mặt phẳng và hệ quả của định lí.
- Hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba thì song song với nhau.
II.Tiến trình bài giảng:
Hoạt động của GV và HS
Nội dung
+ Yêu cầu HS nhắc lại một số vị trí tương đối của hai đường thẳng a, b trong không gian .
1./ Trường hợp 1: Có một mặt phẳng chứa a và b
+ Hãy nêu vị trí tương đối của hai đường thẳng a, b (hình 2.27/55) .
+ Vậy, a // b là hai đường thẳng cùng nằm trong một mặt phẳng và không có điểm chung .
+ Rút ra kết luận về hai đường thẳng song song ?
2./ Trường hợp 2: Không có mặt phẳng nào chứa cả a và b .
+ Cho HS vẽ hình 2.28 và 2.29/56 vào tập .
+ Yêu cầu HS làm câu hỏi D2/56 .
+ Kiểm tra và nhận xét .
+ Nêu nội dung định lí 1/56 .
+ Yêu cầu HS ghi tóm tắt và vẽ hình 2.30/56 .
+ Hướng dẫn cho HS chứng minh .
Có d’ // d, M Î d’, d’’ // d’ và M’ Î d’’. Chứng minh d’’ ≡ d’ .
+ Nhận xét: a // b Þ tồn tại duy nhất mặt phẳng (a) chứa a, b .
+ Kí hiệu: (a) = (a, b) .
+ Yêu cầu HS vẽ hình và chứng minh câu hỏi D3/57 .
+ Kiểm tra và nhận xét .
+ Nêu nội dung định lí 2/57 .
+ Yêu cầu HS ghi tóm tắt, vẽ hình và đưa ra phương pháp chứng minh định lí 2 .
+ Yêu cầu HS vẽ hình 2.32 và 2.33 trang 57 .
+ Nhìn vào hình cho biết:
Các đường a, b thuộc mặt phẳng nào ?
Vị trí tương đối của a, b ?
+ Xét a // b: Hãy chứng minh a // c .
+ Hướng dẫn: Chứng minh bằng phương pháp phản chứng .
+ Nêu nội dung hệ quả .
+ Yêu cầu HS vẽ hình 2.34/57 và ghi tóm tắt hệ quả.
+ Tóm tắt:
Giả thiết : .
Kết luận : a, b, c đồng quy hoặc đôi một song song .
+ Vẽ hình 2.32 và 2.33 trang 57 .
.
+ HS tự chứng minh .
I .Vị trí tương đối của hai đường thẳng trong không gian:
Cho hai đường thẳng a và b trong không gian
TH1:
Có một mặt phẳng chứa a và b (a và b đồng phẳng)
i) a và b có điểm chung duy nhất M,ta nói a và b cắt nhau tại M ,kí hiệu: hay
ii) a và b không có điểm chung.Ta nói a và b song song,kí hiệu:
iii) a trùng b,kí hiệu :
M
a
b
a
b
a
b
TH2:
Không có mặt phẳng nào chứa a và b, ta nói a và b chéo nhau hay a chéo với b.
II.Tính chất:
1)Định lí 1:
Trong không gian ,qua một điểm không nằm trên đường thẳng cho trước ,có một và chỉ môt đường thẳng song song với đường thẳng đã cho.
Nhận xét: Hai đường thẳng song song a và b xác định một mặt phẳng ,kí hiệu mp(a,b) hay (a,b)
a
b
2)Định lí 2: (Về giao tuyến của ba mặt phẳng)
Nếu ba mặt phẳng phân biệt đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy hoặc đồng quy hoặc đôi một song song với nhau
c
I
a
b
a
c
b
Hệ quả:
Nếu hai mặt phẳng phân biệt lần lượt chứa hai đường thẳng song song thì giao tuyến của chúng (nếu có) cũng song song với hai đường thẳng đó hoặc trùng với một trong hai đường thẳng đó.
d
Ví dụ 1:
Cho hình chóp SABCD có đáy hình bình hành ABCD.Xác định giao tuyến của (SAD) và (SBC)
Ví dụ 2:
Cho tứ diện ABCD.Gọi I,J lần lượt là trung điểm của BC và BD.(P) là mặt phẳng đi qua IJ và cắt AC,AD lần lượt tại M,N.Chứng minh tứ giác IJNM là hình thang.
III.Cũng cố:
Nhắc lại nội dung đã học
Bài tập về nhà: 1-3/59,60(SGK)
Soạn ngày 11 tháng 11 năm 2009
Cụm tiết PPCT : 15,16
Tuần : 13
Tiết PPCT : 16
HAI ĐƯỜNG THẲNG CHÉO NHAU, SONG SONG(t2)
I. Mục tiêu :
* Kiến thức : Giúp học sinh nắm được mối quan hệ giữa hai đường thẳng trong không gian, đặc biệt là hai đường thẳng chéo nhau và hai đường thẳng song song.
Hiểu được các vị trítương đối của hai đường thẳng trong không gian.các tính chất của hai đường thẳng song song và hai đường thẳng chéo nhau.
* Kỹ năng : Xác định được khi nào hai đường thẳng song song, khi nào hai đường thẳng chéo nhau, áp dụng được các định ly để chứng minh hai đường thẳng song song và xác định dược giao tuyến của hai mặt phẳng. .
* Thái độ : Liên hệ được với nhiều vấn đề có trong thực tế với bài học, có nhiều sáng tạo trong hình học, hứng thú , tích cực phát huy tính độc lập trong học tập.
II. Phương pháp dạy học :
*Diễn giảng, gợi mở vấn đáp và hoạt động nhóm.
III. Chuẩn bị của GV - HS :
Bảng phụ hình vẽ 2.27 đến 2.38 trong các bài tập ở SGK, thước , phấn màu . . .
III. Tiến trình dạy học :
1. On định tổ chức :
2. Kiểm tra bài củ : Nêu các tính chất thứa nhận. Nêu cách tìm giao tuyến của hai mặt phẳng. Cách tìm giao điểm của đường thẳng với mặt phẳng.
2. Vào bài mới : Trong phòng học em hãy chỉ ra các đường thẳng song song với nhau, hai đường thẳng không cắt nhau mà cũng không song song với nhau.
+ Nếu hai đường thẳng trong không gian không song song thì cắt nhau đúng hay sai?
Trong bài học này chúng ta tìm hiểu về hai đường thẳng song song và hai đường thẳng chéo nhau, các tính chất của chúng.
Hoạt động 1 : II. TÍNH CHẤT
Hoạt động của giáo viên và Học sinh
Nội dung
+ Giả sử có thêm đường thẳng d’ đi qua M và song song với d thì điều gì xảy ra ?
GV cho HS thực hiện D3
+ Khi nào a và b cắt nhau
+ Giả sử a và b cắt nhau tại I, chứng minh I thuộc giao tuyến của hai mặt phẳng (a) và (b)?
GV cho HS thực hiện ví dụ 1
+ Gv yêu cầu hS vẽ hình
+ Hai mặt phẳng đã cho có điểm nào chung không?
+(SAD) và (SBC) có cặp cạnh nào song song với nhau ?
+ Vậy giao tuyến là đường thẳng nào ?
GV cho HS thực hiện ví dụ 2
GV yêu cầu HS vẽ hình
+ mp (P) và (ACD) có điểm nào chung, và có cặp cạnh nào song song với nhau ?Nêu giao tuyến của chúng
+ mp (P) và (BCD) có điểm nào chung, và có cặp cạnh nào song song với nhau ?
II. Các tính chất
Định lí 2 : ( Về giao tuyến của ba mặt phẳng)
Hệ quả :
Ví dụ 1:
Ta có S= ( SAB) Ç(SCD)
Mà AB // CD , AB Ì ( SAB); CD Ì(SCD)
Vậy giao tuyến là đường thẳng đi qua S và song song với AD,BC
Ví dụ 2
Ba mặt phẳng(ACD);(BCD) và (P) đôi một cắt nhau theo các giao uyến CD,IJ,MN vì IJ//CD ( IJ là đường trung bình củ tam giác BCD) nên theo định lí 2 ta có IJ//MN. Vậy tứ giác IJMN là hình thang. Mặt khác M là trung điểm của AC thì N là trung điểm của AD khi đó hình thnag IJMN có một cặp cạnh đối vừa song song vừa bằng nhau nên là hình bình hành
3)Định lí 3:
Hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba thì song song với nhau
a
c
b
Ví dụ:
Cho tứ diện ABCD.Gọi M,N,P,Q,R,S lần lượt là trung điểm của các đoạn thẳng AC,BD,AB,CD,AD và BC.Chứng minh MN,PQ,RS đồng qui tại trung điểm mỗi đoạn
Giải :
Trong tam giác ACD ta có MR là đường trung bình nên ( 1 )
Trong tam giác BCD ta có SN là đường trung bình nên ( 2 )
Từ (1) và ( 2) ta được . Vậy tứ giác MRNS là hình bình hành. Vậy MN,RS cắt nhau tại trung điểm G của mỗi đường
Tương tự tứ giác PRQS cũng là hình bình hành nên PQ, RS cắt nhai tại trung điểm G của mỗi đường. Vậy PQ,RS,MN đồng qui tại trung điểm của mỗi đường .
4. Củng cố : Từng phần
5. Hướng dẫn về nhà Làm bài tập 1, 2,3 trang 59 -60 SGK
Bài 1 : a). Gọi (a ) ch71a P,Q,R và S. ba mặt phẳng (a),(DAC),(BAC) đôi một cắt nhau theo các giao tuyến là SR,PQ,AC . Nên SR,PQ,AC hoặc đôi một song song hoặc đồng qui.
b). Lí luận tương tự ta có PS,RQ,BD đôi một song song hoặc đồng qui.
Bài 2 : a). Nếu PR//AC thì (PRQ) Ç AD=S với QS//PR//AC
b). Gọi I= PRÇ AC , ta có (PRQ) Ç(ACD)=IQ
Gọi S = IQÇAD, ta có S=ADÇ(PRQ)
Soạn ngày 16 tháng 11 năm 2009
Cụm tiết PPCT : 17,18
Tuần : 14
Tiết PPCT : 17
§3. ĐƯỜNG THẲNG VÀ MẶT PHẲNG SONG SONG
I. Mục tiêu :
* Kiến thức : Nắm vững các định nghĩa và các dấu hiệu để nhận biết vị trí tương đối củaq đường thẳng và mặt phẳng : đường thẳng song song với mặt phẳng, đường thẳng cắt mặt phẳng, đường thẳng nằm trong mặt phẳng. Nắm vững các tính chất của đường thẳng song song với mặt phẳng
* Kỹ năng : - Xác định được vị trí tương đối giữa đường thẳng và mặt phẳng.
- Biết sử dụng định lý 1 để chứng minh đường thẳng song song với mặt phẳng.
- Tóm tắt được giả thiết - kết luận của định lý 1, 2, 3 v hệ quả.
* Thái độ : Liên hệ được với nhiều vấn đề có trong thực tế với bài học, có nhiều sáng tạo trong hình học, hứng thú , tích cực phát huy tính độc lập trong học tập.
II. Phương pháp dạy học :
*Diễn giảng, gợi mở vấn đáp và hoạt động nhóm.
III. Chuẩn bị của GV - HS :
Bảng phụ hình vẽ 2.39 đến 2.44 trong các bài tập ở SGK, thước , phấn màu . . .
III. Tiến trình dạy học :
1. On định tổ chức :
2. Kiểm tra bài cũ : Nêu các tính chất về hai đường thẳng song song . Nêu cách tìm giao tuyến của hai mặt phẳng. Cách tìm giao điểm của đường thẳng với mặt phẳng.
3. Vào bài mới : Trong bài 2, các em đ học được: các vị trí tương đối giữa hai đường thẳng trong không gian. Hơm nay, chng ta sẽ nghin cứu mối quan hệ song song giữa đường thẳng và mặt phẳng.
Hoạt động 1 : I. VỊ TRÍ TƯƠNG ĐỐI CỦA ĐƯỜNG THẲNG VÀ MẶT PHẲNG
Hoạt động của giáo viên và Học sinh
Nội dung
+ Trong không gian cho đường thẳng d và mặt phẳng ( a ) có bao nhiêu vị trí tương đối ?
+ GV treo hình 2.39 yêu cầu HS nêu vị trí tương đối của đường thẳng và mặt phẳng.
GV cho HS quan sát hình lập phương ABCDA’B’C’D’ .
• Tìm số điểm chung của cạnh AD và (ABB’A’)
• Tìm số điểm chung của cạnh AD và (A’B’C’D’)
• Tìm số điểm chung của cạnh AD và (ABCD) •
I. Vị trí tương đối của đường thẳng và mặt phẳng
* d và (a) không có điểm chung Þ d // (a)
* d và (a) có một điểm chung duy nhất MÞ d Ç (a) = M
* d và (a) có từ hai điểm chung trở lên Þ d Ì (a)
+ AD cắt mp(ABB’A’) tại A
•+ AD // mp(A’B’C’D’)
+• AD(ABCD)
Hoạt động 1I : II. TÍNH CHẤT
Hoạt động của giáo viên và Học sinh
Nội dung
+ GV nêu định lí 1 và yêu cầu HS vẽ hình
• Gọi () là mp xác định.
Ta cĩ: Giả sử d khơng song song (), suy ra d cắt () tại M.
. Mu thuẩn với giả thiết d //d’
GV cho HS thực hiện D2
+ GV yêu cầu HS vẽ hình và trả lời .
+ GV nêu định lí 2 và yêu cầu HS vẽ hình
GV cho HS thực hiện ví dụ
+ GV yêu cầu HS vẽ hình và trả lời
Tìm giao tuyến của () v (ABC)?
Tìm giao tuyến của () v (ACD)?
Tìm giao tuyến của () v (BCD)?
Tìm giao tuyến của () v (ABD)?
+ GV trình bày lời giải , hướng dẫn HS trả lời thiết diện.
Định lí 1 : Nếu đường thẳng d không nằm trong mặt phẳng (a) và d song song với đường thẳng d’ nằm trong (a) thì d song song với (a)
Ta có MN là đường trung bình của tam giác ABC nên MN // CD mà MN Ë (BCD) , CD Ì ( BCD) Þ MN // ( BCD)
Định lí 2 : Cho đường thẳng a song song với mặt phẳng ( a ). Nêu mặt phẳng ( b ) chứa a và cắt ( a ) theo giao tuyến b thì b song song với a.
4. Củng cố :
Bài 1 : a). Ta có
Mặt khác
b). Tứ giác EFDC là hình bình hành , nên ED Ì (CEF).
Gọi I là trung điểm của AB, ta có Þ MN // ED.
Ta lại có ED Ì ( CEF) Þ MN // ( CEF)
Vậy MN // PQ. Do đó tứ giác MNPQ là hình thang
5. Hướng dẫn về nhà : Xem lại các nội dung của đường thẳng song song với mặt phẳng và xem lại các bài toán đã giải. Đọc trước bài “ Hai mặt phẳng song song “
Soạn ngày 16 tháng 11 năm 2009
Cụm tiết PPCT : 17,18
Tuần : 14
Tiết PPCT : 18
§3. ĐƯỜNG THẲNG VÀ MẶT PHẲNG SONG SONG
I. Mục tiêu :
* Kiến thức : Nắm vững các định nghĩa và các dấu hiệu để nhận biết vị trí tương đối củaq đường thẳng và mặt phẳng : đường thẳng song song với mặt phẳng, đường thẳng cắt mặt phẳng, đường thẳng nằm trong mặt phẳng. Nắm vững các tính chất của đường thẳng song song với mặt phẳng
* Kỹ năng : - Xác định được vị trí tương đối giữa đường thẳng và mặt phẳng.
- Biết sử dụng định lý 1 để chứng minh đường thẳng song song với mặt phẳng.
- Tóm tắt được giả thiết - kết luận của định lý 1, 2, 3 v hệ quả.
* Thái độ : Liên hệ được với nhiều vấn đề có trong thực tế với bài học, có nhiều sáng tạo trong hình học, hứng thú , tích cực phát huy tính độc lập trong học tập.
II. Phương pháp dạy học :
*Diễn giảng, gợi mở vấn đáp và hoạt động nhóm.
III. Chuẩn bị của GV - HS :
Bảng phụ hình vẽ 2.39 đến 2.44 trong các bài tập ở SGK, thước , phấn màu . . .
III. Tiến trình dạy học :
1. On định tổ chức :
2. Kiểm tra bài cũ : Nêu các tính chất về hai đường thẳng song song . Nêu cách tìm giao tuyến của hai mặt phẳng. Cách tìm giao điểm của đường thẳng với mặt phẳng.
3. Vào bài mới :
Hoạt động 1: Xét ví dụ .
Hoạt động của giáo viên và Học sinh
Nội dung
Ví dụ:
Yêu cầu một HS đọc và ghi tóm tắt nội dung ví dụ (trang 61). Yêu cầu các HS khác vẽ hình vào tập .
Gợi ý:
+ Phương pháp tìm thiết diện .
+ Tìm giao điểm các cạnh hình chóp S.ABCD với mặt phẳng (a). Dựa vào vị trí tương đối của đường và mặt để tìm giao tuyến, từ đó suy ra giao điểm .
+ Hãy tìm giao tuyến của (a) với (ABC) ?
+ Tìm giao tuyến (a) với (BCD) ?
+ Giao tuyến đi qua điểm nào và có tính chất gì?
+ Tứ giác EHGF có đặc điểm gì ?
+ Nghiên cứu và tóm tắt .
d’ d
a b
+ Nêu cách chứng minh :
() Ç (a) = d1 // d, M Î d1 .
() Ç (b) = d2 // d’, M Î d2 .
Suy ra d1 = d2 = d’ // d .
Ví dụ:
Giả thiết: Cho tứ giác ABCD, giả sử MÎ(ABC), M Î (a), (a) // AB, (a) // CI .
Kết luận: Tìm thiết diện (a) với (ABC). Thiết diện là hình gì ?
A
H
E
M
B G D
F
C
+ Giao tuyến đi qua M là EF (EÎAC, FÎBC) .
+ FG // CD hoặc EH // CD .
+ MF // GH, FG // EH .
Þ EHGF là hình bình hành .
Hệ quả :
+ Ghi tòm tắt và yêu cầu HS trình bày phương hướng chứng minh .
Giả thiết : .
Kết l
File đính kèm:
- Giao an hinh hoc 11 (day them).doc