Máy tính điện tử Casio fx - 570 MS có nhiều đặc điểm ưu việt hơn các MTBT khác. Sử dụng MTĐT Casio fx - 570 MS lập trình tính các số hạng của một dãy số là một ví dụ. Nếu biết cách sử dụng đúng, hợp lý một quy trình bấm phím sẽ cho kết quả nhanh, chính xác. Ngoài việc MTBT giúp cho việc giảm đáng kể thời gian tính toán trong một giờ học mà từ kết quả tính toán đó ta có thể dự đoán, ước đoán về các tính chất của dãy số (tính đơn điệu, bị chặn.), dự đoán công thức số hạng tổng quát của dãy số, tính hội tụ, giới hạn của dãy.từ đó giúp cho việc phát hiện, tìm kiếm cách giải bài toán một cách sáng tạo. Việc biết cách lập ra quy trình để tính các số hạng của dãy số còn hình thành cho học sinh những kỹ năng, tư duy thuật toán rất gần với lập trình trong tin học.
62 trang |
Chia sẻ: luyenbuitvga | Lượt xem: 1472 | Lượt tải: 0
Bạn đang xem trước 20 trang mẫu tài liệu Phần I: Các bài toán về đa thức, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Phần I: Các bài toán về đa thức
1. Tính giá trị của biểu thức:
Bài 1: Cho đa thức P(x) = x15 -2x12 + 4x7 - 7x4 + 2x3 - 5x2 + x - 1
Tính P(1,25); P(4,327); P(-5,1289); P()
H.Dẫn:
- Lập công thức P(x)
- Tính giá trị của đa thức tại các điểm: dùng chức năng
- Kết quả: P(1,25) = ; P(4,327) =
P(-5,1289) = ; P() =
Bài 2: Tính giá trị của các biểu thức sau:
P(x) = 1 + x + x2 + x3 +...+ x8 + x9 tại x = 0,53241
Q(x) = x2 + x3 +...+ x8 + x9 + x10 tại x = -2,1345
H.Dẫn:
- áp dụng hằng đẳng thức: an - bn = (a - b)(an-1 + an-2b +...+ abn-2 + bn-1). Ta có:
P(x) = 1 + x + x2 + x3 +...+ x8 + x9 =
Từ đó tính P(0,53241) =
Tương tự:
Q(x) = x2 + x3 +...+ x8 + x9 + x10 = x2(1 + x + x2 + x3 +...+ x8) =
Từ đó tính Q(-2,1345) =
Bài 3: Cho đa thức P(x) = x5 + ax4 + bx3 + cx2 + dx + e. Biết P(1) = 1; P(2) = 4; P(3) = 9; P(4) = 16; P(5) = 25. Tính P(6); P(7); P(8); P(9) = ?
H.Dẫn:
Bước 1: Đặt Q(x) = P(x) + H(x) sao cho:
+ Bậc H(x) nhỏ hơn bậc của P(x)
+ Bậc của H(x) nhỏ hơn số giá trị đã biết của P(x), trongbài bậc H(x) nhỏ hơn 5, nghĩa là:
Q(x) = P(x) + a1x4 + b1x3 + c1x2 + d1x + e
Bước 2: Tìm a1, b1, c1, d1, e1 để Q(1) = Q(2) = Q(3) = Q(4) = Q(5) = 0, tức là:
ị a1 = b1 = d1 = e1 = 0; c1 = -1
Vậy ta có: Q(x) = P(x) - x2
Vì x = 1, x = 2, x = 3, x = 4, x = 5 là nghiệm của Q(x), mà bậc của Q(x) bằng 5 có hệ số của x5 bằng 1 nên: Q(x) = P(x) - x2 = (x -1)(x - 2)(x - 3)(x - 4)(x - 5)
ị P(x) = (x -1)(x - 2)(x - 3)(x - 4)(x - 5) + x2.
Từ đó tính được: P(6) = ; P(7) = ; P(8) = ; P(9) =
Bài 4: Cho đa thức P(x) = x4 + ax3 + bx2 + cx + d. Biết P(1) = 5; P(2) = 7; P(3) = 9; P(4) = 11. Tính P(5); P(6); P(7); P(8); P(9) = ?
H.Dẫn:
- Giải tương tự bài 3, ta có: P(x) = (x -1)(x - 2)(x - 3)(x - 4) + (2x + 3). Từ đó tính được: P(5) = ; P(6) = ; P(7) = ; P(8) = ; P(9) =
Bài 5: Cho đa thức P(x) = x4 + ax3 + bx2 + cx + d. Biết P(1) = 1; P(2) = 3; P(3) = 6; P(4) = 10. Tính
H.Dẫn:
- Giải tương tự bài 4, ta có: P(x) = (x -1)(x - 2)(x - 3)(x - 4) + . Từ đó tính được:
Bài 6: Cho đa thức f(x) bậc 3 với hệ số của x3 là k, k ẻ Z thoả mãn:
f(1999) = 2000; f(2000) = 2001
Chứng minh rằng: f(2001) - f(1998) là hợp số.
H.Dẫn:
* Tìm đa thức phụ: đặt g(x) = f(x) + (ax + b). Tìm a, b để g(1999) = g(2000) = 0
ị g(x) = f(x) - x - 1
* Tính giá trị của f(x):
- Do bậc của f(x) là 3 nên bậc của g(x) là 3 và g(x) chia hết cho:
(x - 1999), (x - 2000) nên: g(x) = k(x - 1999)(x - 2000)(x - x0)
ị f(x) = k(x - 1999)(x - 2000)(x - x0) + x + 1.
Từ đó tính được: f(2001) - f(1998) = 3(2k + 1) là hợp số.
Bài 7: Cho đa thức f(x) bậc 4, hệ số của bậc cao nhất là 1 và thoả mãn:
f(1) = 3; P(3) = 11; f(5) = 27. Tính giá trị A = f(-2) + 7f(6) = ?
H.Dẫn:
- Đặt g(x) = f(x) + ax2 + bx + c. Tìm a, b, c sao cho g(1) = g(3) = g(5) = 0 ị a, b, c là nghiệm của hệ phương trình:
ị bằng MTBT ta giải được:
ị g(x) = f(x) - x2 - 2
- Vì f(x) bậc 4 nên g(x) cũng có bậc là 4 và g(x) chia hết cho (x - 1), (x - 3), (x - 5), do vậy: g(x) = (x - 1)(x - 3)(x - 5)(x - x0) ị f(x) = (x - 1)(x - 3)(x - 5)(x - x0) + x2 + 2.
Ta tính được: A = f(-2) + 7f(6) =
Bài 8: Cho đa thức f(x) bậc 3. Biết f(0) = 10; f(1) = 12; f(2) = 4; f(3) = 1.
Tìm f(10) = ? (Đề thi HSG CHDC Đức)
H.Dẫn:
- Giả sử f(x) có dạng: f(x) = ax3 + bx2 + cx + d. Vì f(0) = 10; f(1) = 12; f(2) = 4; f(3) = 1 nên:
lấy 3 phương trình cuối lần lượt trừ cho phương trình đầu và giải hệ gồm 3 phương trình ẩn a, b, c trên MTBT cho ta kết quả:
ị ị
Bài 9: Cho đa thức f(x) bậc 3 biết rằng khi chia f(x) cho (x - 1), (x - 2), (x - 3) đều được dư là 6 và f(-1) = -18. Tính f(2005) = ?
H.Dẫn:
- Từ giả thiết, ta có: f(1) = f(2) = f(3) = 6 và có f(-1) = -18
- Giải tương tự như bài 8, ta có f(x) = x3 - 6x2 + 11x
Từ đó tính được f(2005) = Bài 10: Cho đa thức
a) Tính giá trị của đa thức khi x = -4; -3; -2; -1; 0; 1; 2; 3; 4.
b) Chứng minh rằng P(x) nhận giá trị nguyên với mọi x nguyên
Giải:
a) Khi x = -4; -3; -2; -1; 0; 1; 2; 3; 4 thì (tính trên máy) P(x) = 0
b) Do 630 = 2.5.7.9 và x = -4; -3; -2; -1; 0; 1; 2; 3; 4 là nghiệm của đa thức P(x) nên
Vì giữa 9 só nguyên liên tiếp luôn tìm được các số chia hết cho 2, 5, 7, 9 nên với mọi x nguyên thì tích: chia hết cho 2.5.7.9 (tích của các số nguyên tố cùng nhau). Chứng tỏ P(x) là số nguyên với mọi x nguyên.
Bài 11: Cho hàm số . Hãy tính các tổng sau:
H.Dẫn:
* Với hàm số f(x) đã cho trước hết ta chứng minh bổ đề sau:
Nếu a + b = 1 thì f(a) + f(b) = 1
* áp dụng bổ đề trên, ta có:
a)
b) Ta có . Do đó:
2. Tìm thương và dư trong phép chia hai đa thức:
Bài toán 1: Tìm dư trong phép chia đa thức P(x) cho (ax + b)
Cách giải:
- Ta phân tích: P(x) = (ax + b)Q(x) + r ị ị r =
Bài 12: Tìm dư trong phép chia P(x) = 3x3 - 5x2 + 4x - 6 cho (2x - 5)
Giải:
- Ta có: P(x) = (2x - 5).Q(x) + r ị ị r =
Tính trên máy ta được: r = =
Bài toán 2: Tìm thương và dư trong phép chia đa thức P(x) cho (x + a)
Cách giải:
- Dùng lược đồ Hoocner để tìm thương và dư trong phép chia đa thức P(x) cho (x + a)
Bài 13: Tìm thương và dư trong phép chia P(x) = x7 - 2x5 - 3x4 + x - 1 cho (x + 5)
H.Dẫn: - Sử dụng lược đồ Hoocner, ta có:
1
0
-2
-3
0
0
1
-1
-5
1
-5
23
-118
590
-2950
14751
-73756
* Tính trên máy tính các giá trị trên như sau:
5
1 0 (-5) : ghi ra giấy -5
2 (23) : ghi ra giấy 23
3 (-118) : ghi ra giấy -118
0 (590) : ghi ra giấy 590
0 (-2950) : ghi ra giấy -2950
1 (14751) : ghi ra giấy 14751
1 (-73756) : ghi ra giấy -73756
x7 - 2x5 - 3x4 + x - 1 = (x + 5)(x6 - 5x5 + 23x4 - 118x3 + 590x2 - 2950x + 14751) - 73756
Bài toán 3: Tìm thương và dư trong phép chia đa thức P(x) cho (ax +b)
Cách giải:
- Để tìm dư: ta giải như bài toán 1
- Để tìm hệ số của đa thức thương: dùng lược đồ Hoocner để tìm thương trong phép chia đa thức P(x) cho (x +) sau đó nhân vào thương đó với ta được đa thức thương cần tìm.
Bài 14: Tìm thương và dư trong phép chia P(x) = x3 + 2x2 - 3x + 1 cho (2x - 1)
Giải:
- Thực hiện phép chia P(x) cho , ta được:
P(x) = x3 + 2x2 - 3x + 1 = . Từ đó ta phân tích:
P(x) = x3 + 2x2 - 3x + 1 = 2...
= (2x - 1).
Bài 15: Tìm các giá trị của m để đa thức P(x) = 2x3 + 3x2 - 4x + 5 + m chia hết cho Q(x) = 3x +2
H.Dẫn:
- Phân tích P(x) = (2x3 + 3x2 - 4x + 5) + m = P1(x) + m. Khi đó:
P(x) chia hết cho Q(x) = 3x + 2 khi và chỉ khi: P1(x) + m = (3x + 2).H(x)
Ta có:
Tính trên máy giá trị của đa thức P1(x) tại ta được m =
Bài 16: Cho hai đa thức P(x) = 3x2 - 4x + 5 + m; Q(x) = x3 + 3x2 - 5x + 7 + n. Tìm m, n để hai đa thức trên có nghiệm chung
H.Dẫn:
là nghiệm của P(x) thì m = , với P1(x) = 3x2 - 4x + 5
là nghiệm của Q(x) thì n = , với Q1(x) = x3 + 3x2 - 5x + 7.
Tính trên máy ta được: m = = ;n = =
Bài 17: Cho hai đa thức P(x) = x4 + 5x3 - 4x2 + 3x + m; Q(x) = x4 + 4x3 - 3x2 + 2x + n.
a) Tìm m, n để P(x), Q(x) chia hết cho (x - 2)
b) Xét đa thức R(x) = P(x) - Q(x). Với giá trị m, n vừa tìm chứng tỏ rằng đa thức R(x) chỉ có duy nhất một nghiệm.
H.Dẫn:
a) Giải tương tự bài 16, ta có: m = ;n =
b) P(x) (x - 2) và Q(x) (x - 2) ị R(x) (x - 2)
Ta lại có: R(x) = x3 - x2 + x - 6 = (x - 2)(x2 + x + 3), vì x2 + x + 3 > 0 với mọi x nên R(x) chỉ có một nghiệm x = 2.
Bài 18: Chia x8 cho x + 0,5 được thương q1(x) dư r1. Chia q1(x) cho x + 0,5 được thương q2(x) dư r2. Tìm r2 ?
H.Dẫn:
- Ta phân tích: x8 = (x + 0,5).q1(x) + r1
q1(x) = (x + 0,5).q2(x) + r2
- Dùng lược đồ Hoocner, ta tính được hệ số của các đa thức q1(x), q2(x) và các số dư r1, r2:
1
0
0
0
0
0
0
0
0
1
1
-1
Vậy:
Phần II: Các bài toán về Dãy số
Máy tính điện tử Casio fx - 570 MS có nhiều đặc điểm ưu việt hơn các MTBT khác. Sử dụng MTĐT Casio fx - 570 MS lập trình tính các số hạng của một dãy số là một ví dụ. Nếu biết cách sử dụng đúng, hợp lý một quy trình bấm phím sẽ cho kết quả nhanh, chính xác. Ngoài việc MTBT giúp cho việc giảm đáng kể thời gian tính toán trong một giờ học mà từ kết quả tính toán đó ta có thể dự đoán, ước đoán về các tính chất của dãy số (tính đơn điệu, bị chặn...), dự đoán công thức số hạng tổng quát của dãy số, tính hội tụ, giới hạn của dãy...từ đó giúp cho việc phát hiện, tìm kiếm cách giải bài toán một cách sáng tạo. Việc biết cách lập ra quy trình để tính các số hạng của dãy số còn hình thành cho học sinh những kỹ năng, tư duy thuật toán rất gần với lập trình trong tin học.
Sau đây là một số quy trình tính số hạng của một số dạng dãy số thường gặp trong chương trình, trong ngoại khoá và thi giải Toán bằng MTBT:
I/ Lập quy trình tính số hạng của dãy số:
1) Dãy số cho bởi công thức số hạng tổng quát:
un = f(n), n ẻ N*
trong đó f(n) là biểu thức của
n cho trước.
Cách lập quy trình:
- Ghi giá trị n = 1 vào ô nhớ : 1
- Lập công thức tính f(A) và gán giá trị ô nhớ 1
- Lặp dấu bằng: ... ...
Giải thích:
1 : ghi giá trị n = 1 vào ô nhớ
1 : tính un = f(n) tại giá trị (khi bấm dấu bằng thứ lần nhất) và thực hiện gán giá trị ô nhớ thêm 1 đơn vị:1 (khi bấm dấu bằng lần thứ hai).
* Công thức được lặp lại mỗi khi ấn dấu
Ví dụ 1: Tính 10 số hạng đầu của dãy số (un) cho bởi:
Giải:
- Ta lập quy trình tính un như sau:
1
1 5 1 5 2 1 5 2 1
- Lặp lại phím: ... ...
Ta được kết quả: u1 = 1, u2 = 1, u3 = 2, u4 = 3, u5 = 5, u6 = 8, u7 = 13, u8 = 21,
u9 = 34, u10 = 55.
2) Dãy số cho bởi hệ thức truy hồi dạng:
trong đó f(un) là biểu thức của
un cho trước.
Cách lập quy trình:
- Nhập giá trị của số hạng u1: a
- Nhập biểu thức của un+1 = f(un) : ( trong biểu thức của un+1 chỗ nào có un ta nhập bằng )
- Lặp dấu bằng:
Giải thích:
- Khi bấm: a màn hình hiện u1 = a và lưu kết quả này
- Khi nhập biểu thức f(un) bởi phím , bấm dấu lần thứ nhất máy sẽ thực hiện tính u2 = f(u1) và lại lưu kết quả này.
- Tiếp tục bấm dấu ta lần lượt được các số hạng của dãy số u3, u4...
Ví dụ 1: Tìm 20 số hạng đầu của dãy số (un) cho bởi:
Giải:
- Lập quy trình bấm phím tính các số hạng của dãy số như sau:
1 (u1)
2 1 (u2)
...
- Ta được các giá trị gần đúng với 9 chữ số thập phân sau dấu phảy:
u1 = 1 u8 = 1,414215686
u2 = 1,5 u9 = 1,414213198
u3 = 1,4 u10 = 1,414213625
u4 = 1,416666667 u11 = 1,414213552
u5 = 1,413793103 u12 = 1,414213564
u6 = 1,414285714 u13 = 1,414213562
u7 = 1,414201183 u14 =...= u20 = 1,414213562
Ví dụ 2: Cho dãy số được xác định bởi:
Tìm số tự nhiên n nhỏ nhất để un là số nguyên.
Giải:
- Lập quy trình bấm phím tính các số hạng của dãy số như sau:
3 (u1)
3 (u2)
(u4 = 3)
Vậy n = 4 là số tự nhiên nhỏ nhất để u4 = 3 là số nguyên.
3) Dãy số cho bởi hệ thức truy hồi dạng:
Cách lập quy trình:
* Cách 1:
Bấm phím: b A B a C
Và lặp lại dãy phím:
A B C
A B C
Giải thích: Sau khi thực hiện
b A B a C
trong ô nhớ là u2 = b, máy tính tổng u3 := Ab + Ba + C = Au2 + Bu1 + C và đẩy vào trong ô nhớ , trên màn hình là: u3 : = Au2 + Bu1 + C
Sau khi thực hiện: A B C máy tính tổng u4 := Au3 + Bu2 + C và đưa vào ô nhớ . Như vậy khi đó ta có u4 trên màn hình và trong ô nhớ (trong ô nhớ vẫn là u3).
Sau khi thực hiện: A B C máy tính tổng u5 := Au4 + Bu3 + C và đưa vào ô nhớ . Như vậy khi đó ta có u5 trên màn hình và trong ô nhớ (trong ô nhớ vẫn là u4).
Tiếp tục vòng lặp ta được dãy số un+2 = Aun+1 + Bun + C
*Nhận xét: Trong cách lập quy trình trên, ta có thể sử dụng chức năng để lập lại dãy lặp bởi quy trình sau (giảm được 10 lần bấm phím mỗi khi tìm một số hạng của dãy số), thực hiện quy trình sau:
Bấm phím: b A B a C
A B C
A B C
Lặp dấu bằng: ... ...
* Cách 2: Sử dụng cách lập công thức
Bấm phím: a
b
A B C
Lặp dấu bằng: ... ...
Ví dụ : Cho dãy số được xác định bởi:
Hãy lập quy trình tính un.
Giải:
- Thực hiện quy trình:
2 3 4 1 5
3 4 5
3 4 5
... ...
ta được dãy: 15, 58, 239, 954, 3823, 15290, 61167, 244666, 978671...
Hoặc có thể thực hiện quy trình:
1 2
3 4 5
... ...
ta cũng được kết quả như trên.
4) Dãy số cho bởi hệ thức truy hồi với hệ số biến thiên dạng:
Trong đó là kí hiệu của biểu thức un+1 tính theo un và n.
* Thuật toán để lập quy trình tính số hạng của dãy:
- Sử dụng 3 ô nhớ: : chứa giá trị của n
: chứa giá trị của un
: chứa giá trị của un+1
- Lập công thức tính un+1 thực hiện gán : = + 1 và := để tính số hạng tiếp theo của dãy
- Lặp phím :
Ví dụ : Cho dãy số được xác định bởi:
Hãy lập quy trình tính un.
Giải:
- Thực hiện quy trình:
1 0
1
1
1
... ...
ta được dãy:
II/ Sử dụng MTBT trong việc giải một số dạng toán về dãy số:
1). Lập công thức số hạng tổng quát:
Phương pháp giải:
- Lập quy trình trên MTBT để tính một số số hạng của dãy số
- Tìm quy luật cho dãy số, dự đoán công thức số hạng tổng quát
- Chứng minh công thức tìm được bằng quy nạp
Ví dụ 1: Tìm a2004 biết:
Giải:
- Trước hết ta tính một số số hạng đầu của dãy (an), quy trình sau:
1 0
1
2 3
1
1
- Ta được dãy:
- Từ đó phân tích các số hạng để tìm quy luật cho dãy trên:
a1 = 0
a2 = ị dự đoán công thức số hạng tổng quát:
(1)
a3 =
với mọi n ẻ N* bằng quy nạp.
a4 = * Dễ dàng chứng minh công thức (1) đúng
...
ị
Ví dụ 2: Xét dãy số:
Chứng minh rằng số A = 4an.an+2 + 1 là số chính phương.
Giải:
- Tính một số số hạng đầu của dãy (an) bằng quy trình:
3 2 1 1
2 1
2 1
... ...
- Ta được dãy: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55,...
- Tìm quy luật cho dãy số:
ị dự đoán công thức số hạng tổng quát:
(1)
đúng với mọi n ẻ N*
* Ta hoàn toàn chứng minh công thức (1)
...
Từ đó: A = 4an.an+2 + 1 = n(n + 1)(n + 2)(n + 3) +1 = (n2 + 3n + 1)2.
ị A là một số chính phương.
Cách giải khác: Từ kết quả tìm được một số số hạng đầu của dãy,ta thấy:
- Với n = 1 thì A = 4a1.a3 + 1 = 4.1.6 + 1 = 25 = (2a2 - 1)2
- Với n = 2 thì A = 4a2.a4 + 1 = 4.3.10 + 1 = 121 = (2a3 - 1)2
- Với n = 3 thì A = 4a3.a5 + 1 = 4.6.15 + 1 = 361 = (2a4 - 1)2
Từ đó ta chứng minh A = 4an.an+2 + 1 = (2an+1 - 1)2 (*)
Bằng phương pháp quy nạp ta cũng dễ dàng chứng minh được (*).
2). Dự đoán giới hạn của dãy số:
2.1. Xét tính hội tụ của dãy số:
Bằng cách sử dung MTBT cho phép ta tính được nhiều số hạng của dãy số một cách nhanh chóng. Biểu diễn dãy điểm các số hạng của dãy số sẽ giúp cho ta trực quan tốt về sự hội tụ của dãy số, từ đó hình thành nên cách giải của bài toán.
Ví dụ 1: Xét sự hội tụ của dãy số (an):
Giải:
- Thực hiện quy trình:
1
1
1
... ...
ta được kết quả sau (độ chính xác 10-9):
n
an
n
an
n
an
n
an
1
0,420735492
13
0,030011931
25
-0,005090451
37
-0,016935214
2
0,303099142
14
0,06604049
26
0,028242905
38
0,007599194
3
0,035280002
15
0,04064299
27
0,034156283
39
0,024094884
4
-0,151360499
16
-0,016935489
28
0,009341578
40
0,018173491
5
-0,159820712
17
-0,053410971
29
-0,022121129
41
-0,00377673
6
-0,039916499
18
-0,039525644
30
-0,031871987
42
-0,021314454
7
0,082123324
19
0,00749386
31
-0,012626176
43
-0,018903971
8
0,109928694
20
0,043473583
32
0,016709899
44
0,000393376
9
0,041211848
21
0,038029801
33
0,029409172
45
0,018497902
10
-0,049456464
22
-0,000384839
34
0,015116648
46
0,019186986
11
-0,083332517
23
-0,035259183
35
-0,011893963
47
0,00257444
12
-0,041274839
24
-0,036223134
36
-0,026804833
48
-0,015678666
n
an
- Biểu diễn điểm trên mặt phẳng toạ độ (n ; an):
Dựa vào sự biểu diễn trên giúp cho ta rút ra nhận xét khi n càng lớn thì an càng gần 0 (anđ 0) và đó chính là bản chất của dãy hội tụ đến số 0.
2.2. Dự đoán giới hạn của dãy số:
Ví dụ 1: Chứng minh rằng dãy số (un), (n = 1, 2, 3...) xác định bởi:
có giới hạn. Tìm giới hạn đó.
Giải:
- Thực hiện quy trình:
2
2
... ...
ta được kết quả sau (độ chính xác 10-9):
n
un
n
un
1
1,414213562
11
1,999999412
2
1,847759065
12
1,999999853
3
1,961570561
13
1,999999963
4
1,990369453
14
1,999999991
5
1,997590912
15
1,999999998
6
1,999397637
16
1,999999999
7
1,999849404
17
2,000000000
8
1,999962351
18
2,000000000
9
1,999990588
19
2,000000000
10
1,999997647
20
2,000000000
Dựa vào kết quả trên ta nhận xét được:
1) Dãy số (un) là dãy tăng
2) Dự đoán giới hạn của dãy số bằng 2
Chứng minh nhận định trên:
+ Bằng phương pháp quy nạp ta chứng minh được dãy số (un) tăng và bị chặn ị dãy (un) có giới hạn.
+ Gọi giới hạn đó là a: limun = a. Lấy giới hạn hai vế của công thức truy hồi xác định dãy số (un) ta được:
limun = lim() hay a =
Vậy: lim un = 2
Ví dụ 2: Cho dãy số (xn), (n = 1, 2, 3...) xác định bởi:
Chứng minh rằng dãy (xn) có giới hạn và tìm giới hạn của nó.
Giải:
- Thực hiện quy trình:
1 2 5
2 5 1
2 5 2 5
2 5 2 5
... ...
ta tính các số hạng đầu của dãy số (xn) và rút ra những nhận xét sau:
1) Dãy số (xn) là dãy không giảm
2) x50 = x51 =... = 1,570796327 (với độ chính xác 10-9).
3) Nếu lấy xi (i = 50, 51,...) trừ cho ta đều nhận được kết quả là 0.
ị dự đoán giới hạn của dãy số bằng .
Chứng minh nhận định trên:
+ Bằng phương pháp quy nạp ta dễ dàng chứng minh được xnẻ (0 ; ) và dãy (xn) không giảm ị dãy (xn) có giới hạn.
+ Gọi giới hạn đó bằng a, ta có:
+ Bằng phương pháp giải tích (xét hàm số ) ta có (1) có nghiệm là a = .
Vậy: lim xn = .
3). Một số dạng bài tập sử dụng trong ngoại khoá và thi giải Toán bằng MTBT:
Bài 1: Cho dãy số (un), (n = 0, 1, 2,...):
a) Chứng minh un nguyên với mọi n tự nhiên.
b) Tìm tất cả n nguyên để un chia hết cho 3.
Bài 2: Cho dãy số (an) được xác định bởi:
a) Xác định công thức số hạng tổng quát an.
b) Chứng minh rằng số: biểu diễn được dưới dạng tổng bình phương của 3 số nguyên liên tiếp với mọi n ³ 1.
Bài 3: Cho dãy số (un) xác định bởi:
Tìm tất cả số tự nhiên n sao cho un là số nguyên tố.
Bài 4: Cho dãy số (an) xác định bởi:
Chứng minh rằng:
a) Dãy số trên có vô số số dương, số âm.
b) a2002 chia hết cho 11.
Bài 5: Cho dãy số (an) xác định bởi:
Chứng minh an nguyên với mọi n tự nhiên.
Bài 6: Dãy số (an) được xác định theo công thức:
; (kí hiệu là phần nguyên của số).
Chứng minh rằng dãy (an) là dãy các số nguyên lẻ.
Phần III: Các bài toán về số
1. Tính toán trên máy kết hợp trên giấy:
Bài 1: a) Nêu một phương pháp (kết hợp trên máy và trên giấy) tính chính xác kết quả của phép tính sau: A = 12578963 x 14375
b) Tính chính xác A
c) Tính chính xác của số: B = 1234567892
d) Tính chính xác của số: C = 10234563
Giải:
a) Nếu tính trên máy sẽ tràn màn hình nên ta làm như sau:
A = 12578963.14375 = (12578.103 + 963).14375 = 12578.103.14375 + 963.14375
* Tính trên máy: 12578.14375 = 180808750 ị 12578.103.14375 = 180808750000
* Tính trên máy: 963.14375 = 13843125
Từ đó ta có: A = 180808750000 + 13843125 = 180822593125 (Tính trên máy)
Hoặc viết: 180808750000 = 180000000000 + 808750000 và cộng trên máy:
808750000 + 13843125 = 822593125 ị A = 180822593125
b) Giá trị chính xác của A là: 180822593125
c) B =1234567892=(123450000 + 6789)2 = (1234.104)2 + 2.12345.104.6789 + 67892
Tính trên máy: 123452 = 152399025
2x12345x6789 = 167620410
67892 = 46090521
Vậy: B = 152399025.108 + 167620410.104 + 46090521
= 15239902500000000 + 1676204100000 + 46090521= 15241578750190521
d) C = 10234563 = (1023000 + 456)3= (1023.103 + 456)3
= 10233.109 + 3.10232.106.456 + 3.1023.103.4562 + 4563
Tính trên máy:
10233 = 1070599167
3.10232.456 = 1431651672
3.1023.4562 = 638155584
4563 = 94818816
Vậy (tính trên giấy): C = 1070599167000000000 + 1431651672000000 + + 638155584000 + 94818816 = 1072031456922402816
Bài 2 (Thi giải Toán trên MTBT khu vực - Năm học 2003-2004)
Tính kết quả đúng của các tích sau:
a) M = 2222255555 x 2222266666
b) N = 20032003 x 20042004
Đáp số: a) M = 4938444443209829630 b) N = 401481484254012
Bài 3: (Thi giải Toán trên MTBT lớp 12 tỉnh Thái Nguyên - Năm học 2003-2004)
Tính kết quả đúng của các phép tính sau:
a) A = 1,123456789 - 5,02122003
b) B = 4,546879231 + 107,3564177895
Đáp số: a) A = b) B =
Bài 4: (Thi giải Toán trên MTBT lớp 10 + 11 tỉnh Thái Nguyên - Năm học 2003-2004)
Tính kết quả đúng của phép tính sau:
A = 52906279178,48 : 565,432
Đáp số: A =
Bài 5: Tính chính xác của số A =
Giải:
- Dùng máy tính, tính một số kết quả:
và
và
và
Nhận xét: là số nguyên có (k - 1) chữ số 3, tận cùng là số 4
là số nguyên gồm k chữ số 1, (k - 1) chữ số 5, chữ số cuối cùng là 6
* Ta dễ dàng chứng minh được nhận xét trên là đúng và do đó:
A = 111111111111555555555556
2. Tìm số dư trong phép chia số a cho số b:
Định lí: Với hai số nguyên bất kỳ a và b, b ạ 0, luôn tồn tại duy nhất một cặp số nguyên q và r sao cho:
a = bq + r và 0 Ê r < |b|
* Từ định lí trên cho ta thuật toán lập quy trình ấn phím tìm dư trong phép chia a cho b:
+ Bước 1: Đưa số a vào ô nhớ , số b vào ô nhớ
+ Bước 2: Thực hiện phép chia cho {ghi nhớ phần nguyên q}
+ Bước 3: Thực hiện q = r
Bài 5: a) Viết một quy trình ấn phím tìm số dư khi chia 18901969 cho 3041975
b) Tính số dư
c) Viết quy trình ấn phím để tìm số dư khi chia 3523127 cho 2047. Tìm số dư đó.
Giải:
a) Quy trình ấn phím: 18901969 3041975
(6,213716089)
6 (650119)
b) Số dư là: r = 650119
c) Tương tự quy trình ở câu a), ta được kết quả là: r = 240
Bài 6: (Thi giải Toán trên MTBT lớp 12 tỉnh Thái Nguyên - Năm học 2002-2003)
Tìm thương và số dư trong phép chia: 123456789 cho 23456
Đáp số: q = 5263; r = 7861
Bài 7: (Thi giải Toán trên MTBT lớp 10 + 11 tỉnh Thái Nguyên - Năm học 2003-2004)
Tìm số dư trong phép chia:
a) 987654321 cho 123456789
b) 815 cho 2004
H.Dẫn:
a) Số dư là: r = 9
b) Ta phân tích: 815 = 88.87
- Thực hiện phép chia 88 cho 2004 được số dư là r1 = 1732
- Thực hiện phép chia 87 cho 2004 được số dư là r2 = 968
ị Số dư trong phép chia 815 cho 2004 là số dư trong phép chia 1732 x 968 cho 2004
ị Số dư là: r = 1232
3. Tìm ước chung lớn nhất (UCLN) và bội chung nhỏ nhất (BCNN):
Bổ đề (cơ sở của thuật toán Euclide)
Nếu a = bq + r thì (a, b) = (b, r)
Từ bổ đề trên, ta có thuật toán Euclide như sau (với hai số nguyên dương a, b):
- Chia a cho b, ta được thương q1 và dư r1: a = bq1 + r1
- Chia b cho r1, ta được thương q2 và dư r2: b = r1q2 + r2
- Chia r1 cho r2, ta được thương q3 và dư r3: r1 = r2q3 + r3
....
Tiếp tục quá trình trên, ta được một dãy giảm: b, r1, r2, r3... dãy này dần đến 0, và đó là các số tự nhiên nên ta se thực hiện không quá b phép chia. Thuật toán kết thúc sau một số hữu hạn bước và bổ đề trên cho ta:
(a, b) = (b, r1) = ... rn
Định lí: Nếu x, y là hai số nguyên khác 0, BCNN của chúng luôn luôn tồn tại và bằng:
Bài 8: Tìm UCLN của hai số:
a = 24614205, b = 10719433
Giải:
* Thực hiện trên máy thuật toán tìm số dư trong phép chia số a cho số b, ta được:
- Chia a cho b được: 24614205 = 10719433 x 2 + 3175339
- Chia 10719433 cho 3175339 được: 10719433 = 3175339 x 3 + 1193416
- Chia 3175339 cho 1193416 được: 3175339 = 1193416 x 2 + 788507
- Chia 1193416 cho 788507 được: 1193416 = 788507 x 1 + 404909
- Chia 788507 cho 404909 được: 788507 = 404909 x 1 + 383598
- Chia 404909 cho 383598 được: 404909 = 383598 x 1 + 21311
- Chia 383598 cho 21311 được: 383598 = 21311 x 18 + 0
ị UCLN(a, b) = 21311
Bài 9: (Thi giải Toán trên MTBT lớp 10 + 11 tỉnh Thái Nguyên - Năm học 2003-2004)
Tìm ước chung lớn nhất và bội chung nhỏ nhất của:
a = 75125232 và b = 175429800
Đáp số: UCLN(a, b) = ; BCNN(a, b) =
4. Một số bài toán sử dụng tính tuần hoàn của các số dư khi nâng lên luỹ thừa:
Định lí: Đối với các số tự nhiên a và m tuỳ ý, các số dư của phép chia a, a2, a3, a4... cho m lặp lại một cách tuần hoàn (có thể không bắt đầu từ đầu).
Chứng minh. Ta lấy m + 1 luỹ thừa đầu tiên:
a, a2, a3, a4..., am, am+1
và xét các số dư của chúng khi chia cho m. Vì khi chia cho m chỉ có thể có các số dư {0, 1, 2, ..., m - 2, m - 1}, mà lại có m + 1 số, nên trong các số trên phải có hai số có cùng số dư khi chia cho m. Chẳng hạn hai số đó là ak và ak + l, trong đó l > 0.
Khi đó:
ak º ak + l (mod m) (1)
Với mọi n ³ k nhân cả hai vế của phép đồng dư (1) với an - k sẽ được:
an º an + l (mod m)
Điều này chứng tỏ rằng bắt đầu từ vị trí tương ứng với ak các số dư lặp lại tuần hoàn.
Số l được gọi là chu kỳ tuần hoàn của các số dư khi chia luỹ thừa của a cho m.
Sau đây ta xét một số dạng bài tập sử dụng định lí trên:
Bài toán: Xét các luỹ thừa liên tiếp của số 2:
21, 22, 23, 24, 25, 26, 27, 28, 29,...
Tìm xem khi chia các luỹ thừa này cho 5 nhận được các loại số dư nào ?
Giải: Ta có:
21 = 2, 22 = 4, 23 = 8 º 3 (mod 5), 24 = 16 º 1 (mod 5) (1)
Để tìm số dư khi chia 25 cho 5 ta nhân cả hai vế phép đồng dư (1) với 2 sẽ được:
25 = 24.2 º 1x2 º 2 (mod 5)
26 = 25.2 º 2x2 º 4 (mod 5)
27 = 26.2 º 4x2 º 3 (mod 5)
...
Ta viết kết quả vào hai hàng: hàng trên ghi các luỹ thừa, hàng dưới ghi số dư tương ứng khi chia các luỹ thừa này cho 5:
21
22
23
24
25
26
27
28
29
210
211
...
(2
4
3
1)
(2
4
3
1)
(2
4
3
...
ị hàng thứ hai cho ta thấy rằng các số dư lập lại một cách tuần hoàn: sau 4 số dư (2, 4, 3, 1) lại lặp lại theo đúng thứ tự trên.
Bài 10: Tìm số dư khi chia 22005 cho 5
Giải:
* áp dụng kết quả trên: ta có 2005 º 1 (mod 4) ị số dư khi chia 22005
File đính kèm:
- Giai toan tren Casio 500MS570Ms.doc