PHẦN I: ĐẶT VẤN ĐỀ
Trong chương trình sách giáo khoa chỉnh lí của môn hình học, không những chỉ có từ quỹ tích được sử dụng trở lại mà các kiến thức về quỹ tích cũng đã được trả về vị trí xứng đáng của nó. Điều này cũng có lí do chính đáng. Không thể phủ nhận được ý nghĩa và tác dụng to lớn của quỹ tích trong việc rèn luyện tư duy toán học nói riêng và đối với việc rèn luyện tư duy linh hoạt nói chung, một phẩm chất rất cần thiết cho các hoạt động sáng tạo của con người. Tuy vậy, cũng phải nhận rằng đây cũng là phần khó, nếu không muốn nói là khó nhất của chương trình, khó đối với học sinh trong việc tiếp nhận các kiến thức và phương pháp, và càng khó hơn trong việc vận dụng các phương pháp ấy vào việc giải bài tập. Đối với các thầy, cô giáo dạy toán thì cái khó tiềm ẩn trong khả năng phân tích, dẫn giải để giúp cho học sinh hiểu được một cách rõ ràng, nắm chắc chắn những gì mà thầy cô giáo muốn truyền đạt cho học sinh.
Bài toán quỹ tích được chính thức giới thiệu ở chương III- Góc với đường tròn - trong phần hình học lớp 9, còn gọi là bài toán tìm tập hợp điểm mà các học sinh khá giỏi đã được làm quen ở lớp 8 với các kiến thức thuộc chương trình hình học lớp 7 và lớp 8. Khi gặp dạng toán quỹ tích học sinh giải toán rất kém, nhiều học sinh khá cũng không biết bắt đầu giải bài toán như thế nào?
Học sinh giải các bài toán quỹ tích còn nhiều hạn chế. Vì:
- Nhiều giáo viên quen với việc sử dụng các phương pháp truyền thống, thiên về diễn giải lý thuyết mà ít chú ý tới việc phải đưa học sinh vào các tình huống có vấn đề, phù hợp với nội dung bài toán để đưa các em vào hoạt động rèn luyện kỹ năng tư duy không gian.
21 trang |
Chia sẻ: thanhthanh29 | Lượt xem: 968 | Lượt tải: 0
Bạn đang xem trước 20 trang mẫu tài liệu Sáng kiến kinh nghiệm - Giải một bài toán quỹ tích như thế nào?, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Giải một bài toán quỹ tích như thế nào?
PHầN I: Đặt vấn đề
Trong chương trình sách giáo khoa chỉnh lí của môn hình học, không những chỉ có từ quỹ tích được sử dụng trở lại mà các kiến thức về quỹ tích cũng đã được trả về vị trí xứng đáng của nó. Điều này cũng có lí do chính đáng. Không thể phủ nhận được ý nghĩa và tác dụng to lớn của quỹ tích trong việc rèn luyện tư duy toán học nói riêng và đối với việc rèn luyện tư duy linh hoạt nói chung, một phẩm chất rất cần thiết cho các hoạt động sáng tạo của con người. Tuy vậy, cũng phải nhận rằng đây cũng là phần khó, nếu không muốn nói là khó nhất của chương trình, khó đối với học sinh trong việc tiếp nhận các kiến thức và phương pháp, và càng khó hơn trong việc vận dụng các phương pháp ấy vào việc giải bài tập. Đối với các thầy, cô giáo dạy toán thì cái khó tiềm ẩn trong khả năng phân tích, dẫn giải để giúp cho học sinh hiểu được một cách rõ ràng, nắm chắc chắn những gì mà thầy cô giáo muốn truyền đạt cho học sinh.
Bài toán quỹ tích được chính thức giới thiệu ở chương III- Góc với đường tròn - trong phần hình học lớp 9, còn gọi là bài toán tìm tập hợp điểm mà các học sinh khá giỏi đã được làm quen ở lớp 8 với các kiến thức thuộc chương trình hình học lớp 7 và lớp 8. Khi gặp dạng toán quỹ tích học sinh giải toán rất kém, nhiều học sinh khá cũng không biết bắt đầu giải bài toán như thế nào?
Học sinh giải các bài toán quỹ tích còn nhiều hạn chế. Vì:
Nhiều giáo viên quen với việc sử dụng các phương pháp truyền thống, thiên về diễn giải lý thuyết mà ít chú ý tới việc phải đưa học sinh vào các tình huống có vấn đề, phù hợp với nội dung bài toán để đưa các em vào hoạt động rèn luyện kỹ năng tư duy không gian.
Một số giáo viên có áp dụng phương pháp mới, đưa ra các tình huống có vấn đề để hướng học sinh giải quyết nhưng không giúp học sinh hình thành kỹ năng phân tích và giải bài toán quỹ tích.
Trong chương trình hình học lớp 7 và 8 học sinh đã được làm quen với một số bài toán quỹ tích cơ bản. Việc giải bài toán quỹ tích chỉ dừng lại ở phần tìm quỹ tích các điểm thoả mãn một điều kiện nào đó (phần thuận), nhưng việc giải bài toán quỹ tích ở lớp 9 được trình bày theo ba phần: Phần thuận (và tìm giới hạn quỹ tích), phần đảo, phần kết luận. Xuất phát từ thực tế dạy học, tôi thấy cần thiết phải nghiên cứu dạng toán này. Trước hết là để xây dựng cho mình một phương pháp dạy học đạt kết quả tốt. Sau nữa, tôi mong rằng sau bài viết này, các giáo viên đang giảng dạy môn toán ở chương trình THCS có thể tham khảo và áp dụng. Trong bài viết này, tôi cố gắng trong phạm vi có thể trình bày việc giải các bài toán quỹ tích trên cơ sở phân tích các thao tác tư duy để đi đến lời giải. bằng cách này, tôi hy vọng sẽ giúp học sinh tự mình xây dựng được các kĩ năng, tích luỹ được các kinh nghiệm giải toán, và trong một chừng mực có thể nêu nên các phương pháp giải toán.
PHầN II- Nội dung nghiên cứu
1. Định nghĩa quỹ tích.
Một hình (H) được gọi là quỹ tích của những điểm M có một tính chất (hay tập hợp của những điểm M có tính chất ) khi nó chứa và chỉ chứa những điểm có tính chất .
Muốn chứng minh quỹ tích (tập hợp) các điểm M thoả mãn tính chất là một hình (H) nào đó, ta phải chứng minh hai phần:
Phần thuận: Mọi điểm có tính chất đều thuộc hình (H).
Phần đảo: Mọi điểm thuộc hình (H) đều có tính chất .
Kết luận: Quỹ tích (hay tập hợp) các điểm có tính chất là hình (H).
2. Những thao tác tư duy cần thiết cho việc chuẩn bị giải một bài toán quỹ tích.
Việc giải một bài toán quỹ tích về thực chất là chứng minh một dãy liên tiếp các mệnh đề toán học. Nhưng khác với các bài toán chứng minh hình học, trong phần lớn các bài toán quỹ tích, đầu tiên ta phải tìm ra cho được cái ta cần phải chứng minh. Những thao tác tư duy chuẩn bị sẽ giúp ta định hướng được suy nghĩ, hình dung ra được quỹ tích cần tìm là một hình như thế nào và trong một chừng mực nào đó, nó giúp ta biết phải chứng minh phần thuận, phần đảo, giới hạn v.v.... như thế nào? Dưới đây tôi xin trình bày kĩ những thao tác tư duy chuẩn bị cơ bản nhất.
2.1 Tìm hiểu kĩ bài toán
Tìm hiểu kĩ bài toán tức là nắm chắc được những yếu tố đặc trưng cho bài toán. GV cần chỉ cho HS biết trong một bài toán quỹ tích thường có 3 loại yếu tố đặc trưng:
Loại yếu tố cố định: thông thường là các điểm.
Loại yếu tố không đổi: như độ dài đoạn thẳng, độ lớn của góc, diện tích hình v.v...
Các yếu tố cố định hoặc không đổi thường được cho đi kèm theo các nhóm từ “cố định”, “cho trước”, “không đổi”.
Loại yếu tố thay đổi: thông thường là các điểm mà ta cần tìm quỹ tích hoặc các đoạn thẳng, các hình mà trên đó có điểm mà ta cần tìm quỹ tích. Các yếu tố thay đổi thường cho kèm theo nhóm từ: “di động”, “di chuyển”, “chạy”, “thay đổi” v.v....
Ví dụ 1: Cho một góc vuông xOy cố định và một đoạn thẳng AB có độ dài cho trước; đỉnh A di chuyển trên cạnh Ox, đỉnh B di chuyển trên cạnh Oy. Tìm tập hợp các trung điểm M của đoạn thẳng AB.
GV: Hướng dẫn học sinh phân tích bài toán, dẫn dắt học sinh tìm hướng giải bằng hệ thống các câu hỏi như:
- Trong bài toán này thì yếu tố cho trước (tức yếu tố cố định) là gì?
+ HS: Yếu tố cố định: Đỉnh O của góc xOy.
- Yếu tố không đổi là gì?
+ HS: Yếu tố không đổi: độ dài đoạn thẳng AB.
- Yếu tố thay đổi trong bài toán là gì?
+ HS: Yếu tố thay đổi: điểm A, điểm B.
Nếu A, B thay đổi thì yếu tố nào sẽ thay đổi theo?
+ HS: Do đó kéo theo trung điểm M của AB cũng thay đổi.
GV lưu ý học sinh: Cần chú ý là trong một bài toán có thể có nhiều yếu tố cố định, nhiều yếu tố không đổi, nhiều yếu tố thay đổi. Do vậy, ta chỉ tập trung vào những yếu tố nào liên quan đến cách giải của ta mà thôi. ở bài toán trên ta chỉ quan tâm đến độ dài AB không đổi, khoảng cách giữa M với A, B không đổi nhưng vị trí của M sẽ thay đổi theo A, B.
Cũng cần cho HS biết rằng các yếu tố cố định, không đổi, thay đổi không phải lúc nào cũng được cho một cách trực tiếp mà đôi khi phải được hiểu một cách linh hoạt. Chẳng hạn khi nói: “Cho một đường tròn cố định...” thì ta hiểu rằng tâm của đường tròn là một điểm cố định và bán kính của đường tròn là một độ dài không đổi, hay như trong ví dụ 2 sau đây.
Ví dụ 2: Cho một đường thẳng b và một điểm A cố định không thuộc đường thẳng b. Một tam giác ABC có đỉnh B di chuyển trên đường thẳng b sao cho nó luôn luôn đồng dạng với chính nó. Tìm tập hợp đỉnh C.
Trong ví dụ này HS dễ dàng thấy:
+ Yếu tố cố định: đỉnh A, đường thẳng b.
+ Yếu tố thay đổi: đỉnh B, đỉnh C.
- Vậy còn yếu tố không đổi là gì? đó là hình dạng của tam giác ABC.
Nếu dừng lại ở khái niệm chung là hình dạng không đổi (tự đồng dạng) thì HS không thể giải được bài toán. Do vậy, GV phải cụ thể hoá giả thiết tam giác ABC luôn tự đồng dạng ra như sau:
- Các góc A, B, C có độ lớn không đổi; tỉ số các cạnh, chẳng hạn là một số không đổi.
Như vậy HS hiểu, việc tìm hiểu kĩ bài toán cũng đòi hỏi phải suy nghĩ, chọn lọc để tìm được những yếu tố cố định, yếu tố không đổi, yếu tố thay đổi thích hợp, giúp cho việc tìm ra cách giải bài toán.
Đoán nhận quỹ tích
Thao tác tư duy đoán nhận quỹ tích nhằm giúp HS hình dung được hình dạng của quỹ tích (đường thẳng, đoạn thẳng, cung tròn, đường tròn), nhiều khi còn cho HS biết cả vị trí và kích thước của quỹ tích nữa.
Để đoán nhận quỹ tích GV hướng dẫn HS là thường phải tìm 3 điểm của quỹ tích. Muốn vậy nên xét 3 vị trí đặc biệt, tốt nhất là sử dụng các điểm giới hạn, với điều kiện vẽ hình chính xác, trực giác sẽ giúp HS hình dung được hình dạng quỹ tích.
Nếu 3 điểm ta vẽ được là thẳng hàng thì có nhiều khả năng quỹ tích là đường thẳng.
Nếu 3 điểm ta vẽ được là không thẳng hàng thì quỹ tích cần tìm là đường tròn.
GV làm sáng tỏ điều này cho HS trong ví dụ sau:
Ví dụ 3: Cho nửa đường tròn tâm O, đường kính AB=2R. Một điểm M di chuyển trên nửa đường tròn. Nối AM và đặt trên tia AM một đoạn AN = BM. Tìm tập hợp các điểm N.
GV: Hướng dẫn HS đoán nhận
Khi M B thì độ dài đoạn BM bằng bao nhiêu?
HS: Độ dài BM bằng 0.
Khi đó kéo theo độ dài AN bằng bao nhiêu? Vị trí điểm N ?
HS: Do vậy AN = 0 hay NA.
Từ đó em rút ra nhận xét gì?
HS: Vậy A là một điểm của quỹ tích.
Khi M đến vị trí điểm I, điểm chính giữa của cung AB, hãy so sánh IA và IB?
HS: Do AI=BI nên NI. Vậy I là một điểm của quỹ tích.
Khi M A thì dây cung AM có vị trí như thế nào với đường tròn?
HS: Tiếp xúc với đường tròn tại A.
GV: Như vậy, Khi M A thì dây cung AM đến vị trí của tiếp tuyến At với đường tròn tại điểm A và do BM=BA nên điểm N sẽ dần đến vị trí điểm B’ trên tiếp tuyến At sao cho AB’=AB=2R; B’ là một điểm của quỹ tích.
Qua 3 vị trí của các điểm thuộc quỹ tích, em hãy dự đoán hình dạng của quỹ tích điếm N?
- HS: Do 3 điểm A, I, B’ không thẳng hàng nên ta dự đoán rằng điểm N sẽ nằm trên đường tròn đi qua 3 điểm A, I, B’, tức là đường tròn đường kính AB’.
Ví dụ 4: Cho góc vuông xOy. Một điểm A chạy trên Ox, một điểm B chạy trên Oy. Người ta dựng hình chữ nhật OAMB. Tìm tập hợp điểm M sao cho chu vi hình chữ nhật OAMB bằng một độ dài 2p cho trước.
Đoán nhận quỹ tích
Dễ thấy MA +MB = p
Khi A O thì B D trên Oy, mà OD = p
Khi B O thì A C trên Ox, mà OC = p.
Dự đoán tập hợp của M là đoạn thẳng CD.
Ví dụ 5: Cho một góc vuông xOy và một điểm A cố định nằm trong góc đó. Một góc vuông tAz, đỉnh A, quay xung quanh đỉnh A; cạnh At cắt Ox ở B và Az cắt Oy ở C.
Tìm quỹ tích trung điểm M của đoạn thẳng BC.
Dự đoán quỹ tích
- Khi BO thì điểm C sẽ dần đến vị trí điểm C1 thuộc Oy và điểm M đến vị trí M1 sao cho M1O=M1C1=M1A
M1 nằm trên đường trung trực của OA.
- Khi CO thì điểm B sẽ dần đến vị trí B1 thuộc Ox và điểm M đến vị trí M2 sao cho M2O=M2B1=M2A
M2 nằm trên đường trung trực của OA.
Dự đoán quỹ tích là đoạn M2M1 thuộc đường trung trực của đoạn thẳng OA, phần nằm trong góc xOy.
3. Giải bài toán quỹ tích như thế nào?
Cần làm cho học sinh hiểu, giải một bài toán quỹ tích là tiến hành chứng minh phần thuận (bao gồm cả phần giới hạn quỹ tích) và chứng minh phần đảo. Sau đây tôi sẽ đi sâu hơn vào các phần này.
3.1 Chứng minh phần thuận
Một trong những phương hướng để chứng minh phần thuận là đưa việc tìm quỹ tích về các quỹ tích cơ bản. Trong chương trình học ở trường Phổ thông cơ sở, học sinh đã được giới thiệu các quỹ tích (các tập hợp điểm) cơ bản sau:
Tập hợp các điểm cách đều hai điểm cố định là đường trung trực của đoạn thẳng nối hai điểm ấy.
Tập hợp các điểm cách đều hai cạnh của một góc là tia phân giác của góc ấy.
Tập hợp tất cả những điểm cách đường thẳng b một khoảng l cho trước là hai đường thẳng song song với đường thẳng b và cách đường thẳng b một khoảng l.
Tập hợp tất cả những điểm cách một điểm cố định O một khoảng không đổi r là đường tròn tâm O, bán kính r.
Tập hợp các điểm M tạo thành với hai mút của đoạn thẳng AB cho trước một góc AMB có số đo bằng ( không đổi) là hai cung tròn đối xứng nhau qua AB (gọi là cung chứa góc vẽ trên đoạn AB).
Trường hợp đặc biệt: Tập hợp các điểm M luôn nhìn hai điểm cố định A, B dưới một góc vuông là đường tròn đường kính AB.
Muốn vậy, ta tìm cách thay việc tìm quỹ tích những điểm M có tính chất bằng việc tìm quỹ tích điểm M có tính chất ’ và quỹ tích của những điểm thoả tính chất ’ là một trong những quỹ tích cơ bản mà ta đã biết. (như vậy ’ có thể là “cách đều hai điểm cố định”; “cách một điểm cố định một đoạn không đổi”; “ cách một đường thẳng cố định một đoạn không đổi” v.v...). Như vậy ta thay việc xét mệnh đề M() bằng việc xét mệnh đề M(’) mà M() M(’)
Ví dụ 6: Cho tam giác ABC và một điểm D di chuyển trên cạnh đáy BC. Tìm quỹ tích trung điểm M của đoạn thẳng AD.
Đoán nhận quỹ tích
Nếu DB thì M P, mà AP=BP. P là một điểm thuộc quỹ tích.
Nếu D C thì MQ, mà AQ=QC. Q là một điểm thuộc quỹ tích.
Nếu DH (với AHBC tại H) thì M I, mà IH=AH. H là một điểm thuộc quỹ tích.
Do 3 điểm P, I, Q thẳng hàng nên ta dự đoán quỹ tích điểm M là đoạn thẳng PQ, là đường trung bình của tam giác ABC.
Phân tích phần thuận
Từ M kẻ MK BC và kẻ đường cao AH của ABC.
Dễ thấy MK=.
ABC cố định nên AH không đổi suy ra MK không đổi.
- Vậy điểm M luôn luôn cách BC một đoạn không đổi bằng . Ta có thể thấy ở đây là:
M(): M là trung điểm của AD.
M(’): M cách BC một đoạn không đổi.
Như vậy là ta thay việc tìm quỹ tích điểm M, trung điểm của đoạn thẳng AN, bằng việc tìm quỹ tích của điểm M luôn cách cạnh BC một đoạn không đổi bằng , mà quỹ tích này thì ta đã biết tìm, là dạng bài toán quỹ tích cơ bản thứ 3.
Ví dụ 7: Cho một tam giác cố định ABC. Một điểm D di chuyển trên cạnh đáy BC. Qua D người ta kẻ đường thẳng song song với cạnh AC cắt cạnh AB ở E và đường thẳng song song với cạnh AB cắt cạnh AC ở F. Tìm quỹ tích trung điểm M của đoạn thẳng EF.
Phân tích phần thuận
Vì DF//AE và DE//AF nên tứ giác AEDF là hình bình hành, hai đường chéo EF và AD giao nhau tại trung điểm, vậy M là trung điểm của EF cũng là trung điểm của AD. Bài toán được đưa về việc tìm quỹ tích của trung điểm M của đoạn thẳng AD.
Tính chất ở đây là: M() M là trung điểm của EF.
Tính chất ’ ở đây là: M(’) M là trung điểm của AD.
Và ta đã thay việc tìm quỹ tích trung điểm của EF bằng việc tìm quỹ tích trung điểm của AD, mà quỹ tích này thì ta đã có cách đưa về quỹ tích cơ bản trong ví dụ 6.
Cần lưu ý là khi thay các điểm M() bằng các điểm M(’) mà M() M(’) thì tập hợp các điểm M() chỉ là một tập hợp con (một bộ phận) của tập hợp các điểm M(’), như trong ví dụ 6 tập hợp các điểm M(’) là hai đường thẳng song song và cách đường thẳng BC một đoạn , còn tập hợp các điểm M() là đường trung bình PQ song song với cạnh BC của tam giác ABC mà thôi.
Trong nhiều trường hợp ta không thành công trong việc đưa về các quỹ tích cơ bản mà nhờ vào thao tác dự đoán quỹ tích ta thấy quỹ tích có thể là một đường cố định nào đó. Trong trường hợp này ta tìm cách chứng minh hình chứa các điểm của quỹ tích là một hình cố định.
Ví dụ 8: Cho nửa đường tròn đường kính AB và một điểm P di động trên nửa đường tròn. Tiếp tuyến tại P cắt đường thẳng song song với AP, kẻ từ tâm O của nửa đường tròn, tại điểm M. Tìm tập hợp các điểm M.
Phân tích phần thuận
Nối MB; do OM//AP nên
(đồng vị)
(so le trong)
Mặt khác (vì OA=OP)
Vậy
mà (góc giữa tiếp tuyến với bán kính đi qua tiếp điểm). Vậy
AB cố định, điểm B cố định mà MBAB M luôn chạy trên tia At vuông góc với AB tại B.
Qua các ví dụ trên đây, ta thấy để tiến hành việc chứng minh phần thuận, ta cần tìm ra cho được mối liên hệ giữa điểm cần tìm tập hợp với các điểm cố định, tìm cách sử dụng các yếu tố không đổi và việc biểu diễn các liên hệ đó.
Nếu trong đầu bài có một điểm cố định, ta có thể nghĩ đến tập hợp điểm cần tìm là một đường tròn.
Nếu trong đầu bài có hai điểm cố định A, B thì ta nối điểm cần tìm tập hợp M với A, B và thử tính góc AMB hoặc thử chứng minh MA=MB.
Nếu trong đầu bài xuất hiện một đường thẳng cố định thì ta thử tính khoảng cách từ điểm cần tìm quỹ tích đến đường thẳng cố định ấy.
Nếu trong đầu bài xuất hiện hai đường thẳng song song thì hãy liên tưởng đến tập hợp các điểm cách đều hai đường thẳng song song
Ví dụ 9: Cho một đường tròn tâm O, bán kính R và một điểm P ở ngoài đường tròn, một điểm N di chuyển trên đường tròn. Tìm tập hợp trung điểm M của đoạn thẳng PN.
Phân tích phần thuận
P cố định, O cố định, suy ra trung điểm I của OP cũng cố định. Nối IM. Trong tam giác PON thì
IM==không đổi. - Vậy M thuộc đường tròn tâm I bán kính .
Trong nhiều bài tập, khi chứng minh phần thuận, ta tìm được hình (H’) chứa các điểm M có tính chất , nhưng do những điều kiện hạn chế khác của bài toán, tập hợp các điểm M cần tìm là hình (H) chỉ là một bộ phận của hình (H’). Trong trường hợp này, ta phải thức hiện thêm một công việc nữa: giới hạn quỹ tích.
Có nhiều cách nhìn nhận vị trí của phần giới hạn quỹ tích. Ta có thể coi phần giới hạn là một bộ phận của việc chứng minh phần thuận. Ta cũng có thể đặt phần giới hạn vào phần đảo, hoặc tách phần giới hạn thành một phần riêng biệt, ngang với phần thuận và phần đảo.
Trong quá trình dạy học sinh, tôi đặt giới hạn vào trong phần thuận. Làm như vậy sẽ tránh được việc chọn nhầm phải những điểm không thuộc quỹ tích khi tiến hành chứng minh phần đảo. Thông thường, ta tìm các điểm giới hạn của quỹ tích bằng cách xét các điểm của quỹ tích trong các trường hợp giới hạn, như trong ví dụ sau:
Ví dụ 10: Cho một góc vuông xOy, đỉnh O. Trên cạnh Ox có một điểm A cố định và trên cạnh Oy có một điểm B cố định. Một điểm C thay đổi di chuyển trên đoạn thẳng OB. Gọi H là hình chiếu của điểm B trên tia AC. Tìm tập hợp các điểm H.
Giải
1) Phần thuận.
Vì H là hình chiếu của B trên AC nên
Hai điểm A, B cố định. Điểm H luôn luôn nhìn hai điểm A, B dưới một góc vuông nên H nằm trên đường tròn đường kính AB.
Chú ý: Đường tròn này cũng đi qua đỉnh O của góc vuông xOy.
Giới hạn: Vì điểm C di chuyển trong đoạn OB nên điểm H không thể di chuyển trên cả đường tròn đường kính AB. Ta phải tìm giới hạn.
Khi điểm C đến vị trí điểm B thì điểm H cũng đến vị trí điểm B.
Khi điểm C đến vị trí điểm O, đầu mút của đoạn thẳng OB, thì điểm H cũng đến vị trí điểm O.
- Vậy khi điểm C di chuyển trên đoạn OB thì điểm H di chuyển trên cung OHB của đường tròn đường kính AB.
Như vậy, để tìm giới hạn quỹ tích điểm C, vì điểm C chỉ di chuyển trong đoạn thẳng OB nên ta xét các điểm của quỹ tích khi điểm C dần đến các đầu nút của đoạn thẳng OB, tức là khi CB và khi CO.
Ví dụ 11: Cho một hình vuông cố định ABCD và một điểm P di động trên cạnh AB. Trên tia CP và bên ngoài đoạn thẳng CP ta lấy một điểm M sao cho:
Tìm tập hợp các điểm M.
Phần thuận
Ta có:
(đối đỉnh)
hay
Điểm M nhìn hai điểm cố định A,C dưới một góc vuông nên M nằm trên đường tròn đường kính AC (cũng là đường tròn ngoại tiếp hình vuông ABCD).
Giới hạn. Khi PB thì MB
Khi PA thì MA
Vậy M chỉ di chuyển trên cung nhỏ AB thuộc đường tròn đường kính AC.
Qua các ví dụ trên đây, như ví dụ 10, ta thấy hình (H) tìm được trong khi chứng minh phần thuận (đường tròn đường kính AB) chứa tất cả những điểm nhìn hai điểm cố định A, B dưới một góc vuông nhưng chỉ có những điểm thuộc cung OHB mới là hình chiếu của điểm B trên tia AC mà thôi. Việc tìm giới hạn giúp chúng ta loại bỏ được những điểm không thuộc về quỹ tích cần tìm.
3.2 Chứng minh phần đảo
Thông thường điểm di động cần tìm quỹ tích M phụ thuộc vào sự di động của một điểm khác, điểm P chẳng hạn. Trong phần đảo ta làm như sau: Lấy một vị trí P’ khác của P và ứng với nó ta được điểm M’ trên hình H mà trong phần thuận ta đã chứng minh được đó là hình chứa những điểm M có tính chất . Ta sẽ phải chứng minh M’ cũng có tính chất .
Ví dụ 10:
2) Phần đảo.
Lấy một điểm C’ bất kì trên đoạn OB. Nối AC’ và tia AC’ cắt cung OHB tại một điểm H’. Nối BH’ góc BH’A là góc nội tiếp trong nửa đường tròn nên là hình chiếu của điểm B trên tia AC’.
Kết luận: Tập hợp các hình chiếu H của điểm B trên tia AC là cung OB thuộc đường tròn đường kính AB (phần thuộc nửa mặt phẳng không chứa tia Ox, bờ là đường thẳng Oy).
Ví dụ 11: Cho một hình vuông cố định ABCD và một điểm P di động trên cạnh AB. Trên tia CP và bên ngoài đoạn thẳng CP ta lấy một điểm M sao cho:
Tìm tập hợp các điểm M.
Phần đảo
Lấy một điểm P’ bất kì thuộc cạnh AB của hình vuông. Tia CP’ cắt cung nhỏ AB của đường tròn đường kính AC tại điểm M’.
Ta có (góc nội tiếp chắn nửa đường tròn) và
suy ra
Kết luận: Tập hợp các điểm M là cung AB (không chứa đỉnh C) của đường tròn ngoại tiếp hình vuông ABCD.
Lưu ý: Tuy vậy, trong nhiều bài toán, ta chứng minh phần đảo bằng cách lấy một điểm M’ thuộc hình (H), ứng với nó ta có một vị trí khác của các yếu tố chuyển động mà M’ phụ thuộc, sau đó ta chứng minh trong những điều kiện ấy M’ có tính chất . Chúng ta sẽ xét ví dụ cụ thể sau đây.
Ví dụ 12: Cho một góc vuông xOy. Một điểm A chạy trên cạnh Ox, một điểm B chạy trên cạnh Oy sao cho độ dài đoạn thẳng AB luôn bằng một đoạn l cho trước. Tìm quỹ tích trung điểm I của đoạn thẳng AB.
Giải
Phần thuận: Nối OI. Tam giác AOB vuông mà OI là trung tuyến nên = không đổi. Điểm O cố định, điểm I cách điểm O một đoạn không đổi nên I nằm trên đường tròn tâm O bán kính .
Giới hạn: Vì điểm A chỉ chạy trên Ox, điểm B chỉ chạy trên Oy và đoạn thẳng AB chỉ di chuyển trong góc xOy nên ta phải giới hạn quỹ tích.
Khi điểm A đến trùng với điểm O thì điểm B đến vị trí Bo và điểm I đến vị trí I1trung điểm của đoạn thẳng OB0.
Khi điểm B đến trùng với điểm O thì điểm A đến vị trí Ao và điểm I đến vị trí I0 trung điểm của đoạn thẳng OA0.
- Vậy khi đoạn thẳng AB di chuyển trong góc xOy thì điểm I nằm trên cung tròn I0I1 thuộc đường tròn tâm O bán kính , tức là cung phần tư đường tròn nằm trong góc xOy.
Phần đảo: Lấy điểm I’ thuộc cung phần tư I0I1. Quay cung tròn tâm I’, Bán kính , cắt Ox ở A và Oy ở B’.
Ta có cân nên
Do vậy
Tương tự
Suy ra ba điểm A’, I’, B’ thẳng hàng. Ta lại có và I’ là trung điểm của A’B’.
Kết luận: Quỹ tích trung điểm I của đoạn thẳng AB là cung I0I1 thuộc đường tròn tâm O, bán kính (phần nằm trong góc xOy).
Ví dụ 13: Cho một góc vuông xOy, hai điểm A, B cố định trên cạnh Ox và một điểm M di động trên cạnh Oy. Đường thẳng vuông góc với MA kẻ từ A cắt đường thẳng vuông góc với MB kẻ từ B tại điểm N. Tìm tập hợp các điểm N.
Giải
Phần thuận.
- Kẻ NHOx.
Gọi I là trung điểm đoạn thẳng MN. Do IA=IB(=MN) nên I nằm trên trung trực của đoạn thẳng AB. Nếu gọi K là trung điểm của AB thì IKAB.
Ta lại có IK//OM//NH mà I là trung điểm của MN nên K là trung điểm của OH OH=2OK=không đổi. Vậy điểm N di chuyển trên tia Hz vuông góc với cạnh Ox tại điểm H sao cho OH=2OK.
Phần đảo.
Lấy điểm M’ trên Oy, nối M’A. Đường vuông góc với M’A kẻ từ A cắt tia Hz tại N’. Nối N’B và M’b.
Ta cần chứng minh: N’BM’B
Gọi I’ là trung điểm của M’N’.
Ta có: (1) (I’A là trung tuyến ứng với cạnh huyền M’N’ của tam giác vuông M’AN’)
Mặt khác I’ là trung điểm của M’N’, K là trung điểm của OH nên I’K//M’O I’KAB mà K là trung điểm của AB nên I’K là đường trung trực của AB, cho ta I’A=I’B (2)
Từ (1) và (2) suy ra =I’M’=I’N’
Hay tam giác M’BN’ vuông góc tại B. Vậy N’BM’B
Kết luận: Tập hợp các điểm N là tia Hz nằm trong góc xOy, vuông góc với cạnh Ox tại điểm H, sao cho OH=2OK (K là trung điểm của đoạn thẳng AB).
Lưu ý: Trong bài toán này, liên hệ giữa hai điểm M và N phải thông qua các giả thiết: và N là giao điểm của hai đường vuông góc kẻ từ A với MA, kẻ từ B với MB. Do vậy ta phải chọn một trong ba phương hướng sau đây để chứng minh phần đảo:
Chứng minh M’
Chứng minh
Chứng minh
- Nếu chú ý rằng cách dựng các điểm M, N là như nhau thì ngay từ đầu ta đã có thể dự đoán tập hợp của N phải là một tia tương tự như Oy và trong khi chứng minh phần đảo, sau khi lấy một điểm N’Hz, và dựng lại điểm M’, giao điểm của các đường vuông góc với N’A kẻ từ A với đường vuông góc với N’B kẻ từ B, thì việc chứng minh M’Oy có thể được lặp lại y hệt như phần thuận.
Như vậy, việc lựa chọn giả thiết để xây dựng “kế hoạch” chứng minh phần đảo là rất quan trọng. Nếu khéo chọn, nhiều khi sẽ giảm bớt được các khó khăn trong việc chứng minh và có thể cho ta những lời giải hay.
Tổng quát: khi chứng minh phần đảo của bài toán quỹ tích, sau khi lấy điểm M bất kì thuộc hình vừa tìm được, ta phải chứng minh rằng điểm M có tính chất T nêu trong đề bài. Tính chất T này thường được tách làm hai nhóm tính chất T1 và T2. Ta dựng các điểm chuyển động còn lại thoả mãn tính chất T1 rồi chứng minh M và các điểm ấy thoả mãn tính chất T2. Như thế, tuỳ theo cách chia nhóm T1 và T2 mà có nhiều cách chứng minh đảo đối với cùng một bài toán.
4. Thực nghiệm dạy toán quỹ tích.
4.1 Lớp khảo sát
- Sau khi nghiên cứu chương III hình học 9 và tìm hiểu tình hình dạy toán quỹ tích ở trường THCS Giao Thanh, tôi đã chọn dạy thực nghiệm dạng toán quỹ tích ở lớp 9B, tôi chia lớp thành 2 nhóm, nhóm 1 dạy các em phân tích dạng toán quỹ tích theo hướng nghiên cứu và dạy đối chứng ở nhóm 2 giữ nguyên phương pháp cũ mà các em vẫn được học.
- Trước khi dạy thực nghiệm, để biết được trình độ thức tế của học sinh, tôi đã cho cả lớp làm bài 50 (trang 87 SGK toán 9). Kết quả như sau:
Bảng 1:
Loại điểm
Nhóm, số HS
Điểm tốt
Điểm khá
Điểm
T. Bình
Điểm yếu kém
Nhóm 1
Số lượng: 22 HS
Số HS
1
3
13
5
TL%
4,54
13,63
59,09
22,72
Nhóm 2
Số lượng: 22 HS
Số HS
1
3
13
5
TL%
4,54
13,63
59,09
22,72
4.2 Tiến trình dạy thực nghiệm và kết quả
- Sau khi khảo sát và chia lớp thành 2 nhóm tôi đã tiến hành dạy thực nghiệm áp dụng phương pháp phân tích, dẫn giải học sinh đi giải các bài toán quỹ tích dưới dạng chuyên đề ở nhóm 1 như sau:
Tên bài tập: VD 3; VD5; VD7; VD8; VD10; VD11; VD12.
Mục đích, yếu cầu: Sau khi giải xong các bài tập, HS nắm được yếu tố cố định, yếu tố di động, yếu tố không đổi, biết dự đoán quỹ tích là hình gì, biết dựng bài toán ở phần đảo, biết tìm giới hạn quỹ tích.
Phương pháp: Phân tích, nêu vấn đề.
Phương tiện: Máy chiếu, dùng phần mền vẽ hình GeoGebra chay trên nền java, compa, thước, eke, thước đo góc, phấn màu).
Sau khi dạy thực nghiệm và dạy đối chứng ở hai nhóm. Để đánh giá kết quả, tôi đã tiến hành:
Lập phiếu điều tra cả hai nhóm. Kết quả như bảng 2.
Ra bài tập kiểm tra học sinh cả hai nhóm. Kết quả như bảng 3.
Bảng 2
Nội dung điều tra
Kết quả nhó
File đính kèm:
- SKKN toan 9.doc