Đề thi thử học sinh giỏi Toán 9 - Đề số 2

Bài 9(2đ) Gọi M là một điểm bất kì trên đường thẳng AB. Vẽ về một phía của AB các hình vuông AMCD, BMEF.

a. Chứng minh rằng AE vuông góc với BC.

b. Gọi H là giao điểm của AE và BC. Chứng minh rằng ba điểm D, H, F thẳng hàng.

c. Chứng minh rằng đường thẳng DF luôn luôn đi qua một điểm cố định khi M chuyển động trên đoạn thẳng AB cố định.

d. Tìm tập hợp các trung điểm K của đoạn nối tâm hai hình vuông khi M chuyển động trên đường thẳng AB cố định.

 

doc3 trang | Chia sẻ: luyenbuitvga | Lượt xem: 1974 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Đề thi thử học sinh giỏi Toán 9 - Đề số 2, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
ĐỀ SỐ 2 Bài 1 (2đ): 1. Cho biểu thức: A = a. Rút gọn biểu thức. b. Cho Tìm Max A. 2. Chứng minh rằng với mọi số nguyên dương n ta có: từ đó tính tổng: S = Bài 2 (2đ): Phân tích thành nhân tử: A = (xy + yz + zx) (x + y+ z) – xyz Bài 3 (2đ): 1. Tìm giá trị của a để phương trình sau chỉ có 1 nghiệm: 2. Giả sử x1,x2 là 2 nghiệm của phương trình: x2+ 2kx+ 4 = 4 Tìm tất cả các giá trị của k sao cho có bất đẳng thức: Bài 4: (2đ) Cho hệ phương trình: 1. Giải hệ phương trình với m = 1 2. Tìm m để hệ đã cho có nghiệm. Bài 5 (2đ) : 1. Giải phương trình: 2. Giải hệ phương trình: Bài 6 (2đ): Trên mặt phẳng toạ độ cho đường thẳng (d) có phương trình: 2kx + (k – 1)y = 2 (k là tham số) 1. Tìm k để đường thẳng (d) song song với đường thẳng y = ? Khi đó hãy tính góc tạo bởi (d) và tia Ox. 2. Tìm k để khoảng cách từ gốc toạ độ đến đường thẳng (d) là lớn nhất? Bài 7 (2đ): Giả sử x, y là các số dương thoả mãn đẳng thức: Tìm giá trị của x và y để biểu thức: đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất ấy. Bài 8 (2đ): Cho D ABC với BC = 5cm, AC= 6cm; AB = 7cm. Gọi O là giao điểm 3 đường phân giác, G là trọng tâm của tam giác. Tính độ dài đoạn OG. Bài 9(2đ) Gọi M là một điểm bất kì trên đường thẳng AB. Vẽ về một phía của AB các hình vuông AMCD, BMEF. a. Chứng minh rằng AE vuông góc với BC. b. Gọi H là giao điểm của AE và BC. Chứng minh rằng ba điểm D, H, F thẳng hàng. c. Chứng minh rằng đường thẳng DF luôn luôn đi qua một điểm cố định khi M chuyển động trên đoạn thẳng AB cố định. d. Tìm tập hợp các trung điểm K của đoạn nối tâm hai hình vuông khi M chuyển động trên đường thẳng AB cố định. Bài 10 (2đ): Cho khác góc bẹt và một điểm M thuộc miền trong của góc. Dựng đường thẳng qua M và cắt hai cạnh của góc thành một tam giác có diện tích nhỏ nhất. ……………………………………………………………

File đính kèm:

  • dochsgtoan9d2.doc
Giáo án liên quan