Câu 7:(3điểm)Cho hình chóp S.ABCD , có đáy ABCD l à hình vuông cạnh a ;
SA ^(ABCD) tan của góc hợp bởi cạnh bên SC và mặt phẳng chứa đáy bằng 2 .
a) Chứng minh tam giác SBC vuông.
b) Chứng minh BD ^ SC và (SCD)^(SAD)
c) Tính khoảng cách t ừ điểm A đến mặt phẳng (SCB)
3 trang |
Chia sẻ: luyenbuitvga | Lượt xem: 1127 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Đề 5: Ôn thi học kỳ II Khối 11, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
ĐỀ 5 ÔN THI HK II KHỐI 11
1
Đề 5
Câu 1:(0,75điểm) Tìm các giới hạn sau:
a)
6 1
lim
3 2
- -
+
n
n
b) 2 lim( ) n n n + - c)
4 5.3
lim
3 2
+
+
n n
n n
Câu 2:(0,75điểm) Tìm các giới hạn sau :
a)
2
5 1
lim
2 + ®
- +
- x
x
x
b) | 8 x | lim 2
3 x
-
®
c)
1 3
lim
2 ®-¥
+
- x
x
x
Câu 3:(1,5điểm) Tính đạo hàm các hàm số sau:
a) 5
1
y x 1
x
= + - b)
1
2
x
y
x
+
=
-
c) 3 cos 5 = y x
Câu 4:(1điểm) Cho hàm số f(x) = x 4 + x 2 – 2x 3. Chứng minh rằng
f’(1) f’(1) = 4f(0)
Câu 5:(1điểm) Cho hàm số y=
x 2 2
khi x 0
f (x) x
m 1 khi x 0
ì + -
¹ ï = í
ï + = î
Xác định m để hàm số liên tục tại x=0
Câu 6:(2điểm) Cho hàm số f(x)=x 3 3x+1 (1)
a) Tìm x sao cho f’(x)>0.
b) Viết phương trình tiếp tuyến của đồ thị hàm số (1),biết hệ số góc của tiếp tuyến bằng 9
c) Chứng minh rằng phương trình f(x)=0 có ít nhất một nghiệm dương.
Câu 7:(3điểm)Cho hình chóp S.ABCD , có đáy ABCD là hình vuông cạnh a ;
SA ^(ABCD) tan của góc hợp bởi cạnh bên SC và mặt phẳng chứa đáy bằng 2 .
a) Chứng minh tam giác SBC vuông.
b) Chứng minh BD ^ SC và (SCD)^(SAD)
c) Tính khoảng cách từ điểm A đến mặt phẳng (SCB)
...................................................................Hết....................................................................
Chú ý: Giám thị không giải thích gì thêm
ĐỀ 5 ÔN THI HK II KHỐI 11
2
Đáp án đề 5
Câu 1:(0,75đ)
a) 2
b)
1
2
c) +¥
Câu 2:(0,75đ)
a)-¥
b) 5
c) 3
Câu 3:(1,5đ)
a) 4
2
1
' 5 y x
x
= +
b)
( ) 2
3
'
2
y
x
-
=
-
c) 2 ' 15cos 5 .sin5 = - y x x
Câu 4:(1đ)
3 '( ) 4 2 2 f x x x = + -
'(1) 4 f = ; '( 1) 8 f - = - ;f(0)=3
f’(1) f’(1) = 4+8=12=4f(0) (đpcm)
Câu 5: (1đ)
+ f(0)=m+1
+
0
1
lim ( )
2 2 ®
=
x
f x
+ Để hàm số liên tục tại x=0 Û
0
lim ( ) (0)
x
f x f
®
=
+
1 2 2
2 2
m
-
=
Câu 6: (2đ)
a) (0,5điểm)
2 f '(x) 3x 3
x 1
f '(x) 0
x 1
= -
< - é
> Û ê > ë
b) (1điểm)
Ta có:
2 2
0 0
0
0
3 3 9 4
2
2
- = Û =
= é
Þ ê = - ë
x x
x
x
+ 0 0 2; 3; 9 = = = x y hsg
PTTT: y=9x18+3=9x15
+ 0 0 2; 1; 9 = - = - = x y hsg
ĐỀ 5 ÔN THI HK II KHỐI 11
3
PTTT:y=9x+181=9x+17
c) (0,5điểm)
Xét hàm số f(x)= x 3 3x+1
· f(0)=1, f(1)=1
· f(0).f(1)<0
Hàm số y=f(x) là một hàm đa thức nên nó liên tục trên R.Do đó nó liên tục trên đoạn
[0;1 ].
Từ đó suy ra f(x)=0 có ít nhất một nghiêm trong khoảng (0;1) ,do đó phương trình có
ít nhất một nghiệm dương
Câu 7: (3đ)
a)(1điểm)
AB BC (BC (ABCD)) ^ Ì và AB là hình chiếu của đường xiên SB nên SB BC ^ (định lí
ba đường vuông góc)
Vậy tam giác SBC vuông tại B
b) (1điểm)
·
SA BD
AC BD
BD (SAC)
^
^
Þ ^
Vậy BD SC ^
·
SA DC
AD DC
DC (SAD)
^
^
Þ ^
Do đó: ( ) ( ) SAD SDC ^
c)(1điểm)
AH= 2a
5
File đính kèm:
- DE 5 TOAN 11 HK2 BINH DUONG KEYS.pdf