Giáo án bồi dưỡng học sinh giỏi Toán 8 năm học 2011-2012

A/ Mục tiêu:

* Kiến thức: HS ụn lại TÍNH CHẤT CHIA HẾT CỦA SỐ NGUYấN

* Kĩ năng: Làm các dạng toán:- Chứng minh quan hệ chia hết

 - Tìm số dư

 - Tìm điều kiện chia hết

B /Tiến trình dạy học

 

doc70 trang | Chia sẻ: oanh_nt | Lượt xem: 1057 | Lượt tải: 1download
Bạn đang xem trước 20 trang mẫu tài liệu Giáo án bồi dưỡng học sinh giỏi Toán 8 năm học 2011-2012, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Ngày soạn: 08/09/2011 Buổi 1: Chuyờn đề 1 TÍNH CHẤT CHIA HẾT CỦA SỐ NGUYấN A/ Mục tiờu: * Kiến thức: HS ụn lại TÍNH CHẤT CHIA HẾT CỦA SỐ NGUYấN * Kĩ năng: Làm cỏc dạng toỏn:- Chứng minh quan hệ chia hết - Tìm số dư - Tìm điều kiện chia hết B /Tiến trỡnh dạy học Dạng 1/1. Chứng minh quan hệ chia hết Gọi A(n) là một biểu thức phụ thuộc vào n (nN hoặc n Z) a/ Để chứng minh A(n) chia hết cho m ta phân tích A(n) thành tích trong đó có một thừa số là m + Nếu m là hợp số ta phân tích m thành tích các thừa số đôi một nguyên tố cùng nhau rồi chứng minh A(n) chia hết cho tất cả các số đó + Trong k số liên tiếp bao giờ cũng tồn tại một số là bội của k b/. Khi chứng minh A(n) chia hết cho n ta có thể xét mọi trường hợp về số dư khi chia m cho n * Ví dụ1: C/minh rằng A=n3(n2- 7)2 – 36n chia hết cho 5040 với mọi số tự nhiên n Giải: Ta có 5040 = 24. 32.5.7 A= n3(n2- 7)2 – 36n = n.[ n2(n2-7)2 - 36 ] = n. [n.(n2-7 ) -6].[n.(n2-7 ) +6] = n.(n3-7n – 6).(n3-7n +6) Ta lại có n3-7n – 6 = n3 + n2 - n2 – n – 6n -6 = n2.(n+1)- n (n+1) -6(n+1) =(n+1)(n2-n-6)= (n+1 )(n+2) (n-3) Tương tự : n3-7n+6 = (n-1) (n-2)(n+3) d Do đó A= (n-3)(n-2) (n-1) n (n+1) (n+2) (n+3) Ta thấy : A là tích của 7 số nguyên liên tiếp mà trong 7 số nguyên liên tiếp: Tồn tại một bội số của 5 (nên A 5 ) Tồn tại một bội của 7 (nên A 7 ) Tồn tại hai bội của 3 (nên A 9 ) Tồn tại 3 bội của 2 trong đó có bội của 4 (nên A 16) Vậy A chia hết cho 5, 7,9,16 đôi một nguyên tố cùng nhau A 5.7.9.16= 5040 Ví dụ 2: Chưng minh rằng với mọi số nguyên a thì : a/ a3 –a chia hết cho 3 b/ a5-a chia hết cho 5 Giải: a/ a3-a = (a-1)a (a+1) là tích của các số nguyên liên tiếp nên tích chia hết cho 3 b/ A= a5-a = a(a2-1) (a2+1) Cách 1: Ta xết mọi trường hợp về số dư khi chia a cho 5 Nếu a= 5 k (kZ) thì A 5 (1) Nếu a= 5k 1 thì a2-1 = (5k21) 2 -1 = 25k2 10k5 A 5 (2) Nếu a= 5k 2 thì a2+1 = (5k2)2 + 1 = 25 k220k +5 A 5 (3) Từ (1),(2),(3) A 5, n Z Cách 2: Phân tích A thành một tổng của hai số hạng chia hết cho 5 : + Một số hạng là tích của 5 số nguyên liên tiếp + Một số hạng chứa thừa số 5 Ta có : a5-a = a( a2-1) (a2+1) = a(a2-1)(a2-4 +5) = a(a2-1) (a2-4) + 5a(a2-1) = a(a-1)(a+1) (a+2)(a-2)- 5a (a2-1) Mà = a(a-1)(a+1) (a+2)(a-2) 5 (tích của 5 số nguyên liên tiếp ) 5a (a2-1) 5 Do đó a5-a 5 * Cách 3: Dựa vào cách 2: Chứng minh hiệu a5-a và tích của 5 số nguyên liên tiếp chia hết cho 5. Ta có: a5-a – (a-2)(a-1)a(a+1)(a+2) = a5-a – (a2- 4)a(a2-1) = a5-a - (a3- 4a)(a2-1) = a5-a - a5 + a3 +4a3 - 4a = 5a3 – 5a 5 a5-a – (a-2)(a-1)a(a+1)(a+2) 5 Mà (a-2)(a-1)a(a+1)(a+2) 5 a5-a 5(Tính chất chia hết của một hiệu) c/ Khi chứng minh tính chia hết của các luỹ thừa ta còn sử dụng các hằng đẳng thức: an - bn = (a - b)( an-1 + an-2b+ an-3b2+ …+abn-2+ bn-1) an + bn = (a + b)( an-1 - an-2b+ an-3b2 - …- abn-2+ bn-1) Sử dụng tam giác Paxcan: 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 ….. Mỗi dòng đều bắt đầu bằng 1 và kết thúc bằng 1 Mỗi số trên một dòng (kể từ dòng thứ 2) đều bằng số liền trên cộng với số bên trái của số liền trên. Do đó: Với a, b Z, n N: an - bn chia hết cho a - b( ab) a2n+1 + b2n+1 chia hết cho a + b( a-b) (a+b)n = Bsa +bn ( BSa:Bội số của a) (a+1)n = Bsa +1 (a-1)2n = Bsa +1 (a-1)2n+1 = Bsa -1 * VD3: CMR với mọi số tự nhiên n, biểu thức 16n – 1 chia hết cho 17 khi và chỉ khi n là số chẵn. Giải: + Cách 1: - Nếu n chẵn: n = 2k, kN thì: A = 162k – 1 = (162)k – 1 chia hết cho 162 – 1( theo nhị thức Niu Tơn) Mà 162 – 1 = 255 17. Vậy A17 - Nếu n lẻ thì : A = 16n – 1 = 16n + 1 – 2 mà n lẻ thì 16n + 116+1=17 (HĐT 9) A không chia hết cho 17 +Cách 2: A = 16n – 1 = ( 17 – 1)n – 1 = BS17 +(-1)n – 1 (theo công thức Niu Tơn) Nếu n chẵn thì A = BS17 + 1 – 1 = BS17 chia hết cho 17 Nếu n lẻ thì A = BS17 – 1 – 1 = BS17 – 2 Không chia hết cho 17 Vậy biểu thức 16n – 1 chia hết cho 17 khi và chỉ khi n là số chẵn, n N d/ Ngoài ra còn dùng phương pháp phản chứng, nguyên lý Dirichlê để chứng minh quan hệ chia hết. Dạng 2/2. Tìm số dư * VD1:Tìm số dư khi chia 2100 a/ cho 9 b/ cho 25 Giải: a/ Luỹ thừa của 2 sát với bội của 9 là 23 = 8 = 9 – 1 Ta có : 2100 = 2. 299= 2. (23)33 = 2(9 – 1 )33 = 2(BS9 -1) ( theo nhị thức Niu Tơn) = BS9 – 2 = BS9 + 7 Vậy 2100 chia cho 9 dư 7 b/ Luỹ thừa của 2 gần với bội của 25 là 2 10 = 1024 =1025 – 1 Ta có: 2100 =( 210)10 = ( 1025 – 1 )10 = BS 1025 + 1 = BS 25 +1 (theo nhị thức Niu Tơn) Vậy 2100 chia cho 25 dư 1 * VD2: Tìm 4 chữ số tận cùng của 51994 khi viết trong hệ thập phân Giải: Cách 1: Ta có: 1994 = 4k + 2 và 54 = 625 Ta thấy số tận cùng bằng 0625 khi nâng lên luỹ thừa nguyên dương bất kì vẫn tận cùng bằng 0625 Do đó: 51994 = 54k+2=(54)k. 52 = 25. (0625)k = 25. (…0625)= …5625 Cách 2: Tìm số dư khi chia 51994 ch 10000 = 24.54 Ta thấy 54k – 1 = (54)k – 1k chia hết cho 54 – 1 = (52 + 1) (52 - 1) 16 Ta có 51994 = 56(51988 – 1) + 56 mà 56 54 và 51988 – 1 = (54)497 – 1 chia hết cho 16 ( 51994)3. 56(51988 – 1)chia hết cho 10000 còn 56= 15625 51994 = BS10000 + 15625 51994 chia cho 10000 dư 15625 Vậy 4 chữ số tận cùng của 51994 là 5625 Dạng 3/3. Tìm điều kiện chia hết * VD1: Tìm số nguyên n để giá trị của biểu thức A chia hết cho giá trị của biểu thức B: A = n3 + 2n2- 3n + 2; B = n2 – n Giải: n3 + 2n2- 3n + 2 n2 – n n3 – n2 n + 3 3n2 - 3n + 2 3n2 – 3n 2 Ta có: n3 + 2n2- 3n + 2 = (n2 – n)(n + 3) + Do đó Giá trị của A chia hết cho giá trị của B n2 – n Ư(2) 2 chia hết cho n(n – 1) 2 chia hết cho n Ta có bảng: n 1 -1 2 -2 n – 1 0 -2 1 -3 n(n – 1) 0 2 2 6 Loại T/m T/m Loại Vậy với n = -1, n = 2 thì giá trị của biểu thức A chia hết cho giá trị của biểu thức B VD 2: Tìm số nguyên n dể n5 + 1 chia hết cho n3 + 1 Giải: n5 + 1 n3 + 1n5 + n2 – n2 + 1 n3 + 1 n2(n3 + 1)- ( n2 – 1) n3 + 1 (n – 1)(n + 1) (n+1)(n2 – n + 1) n – 1 n2 – n + 1 n(n – 1) n2 – n + 1 Hay n2 – n n2 – n + 1 (n2 – n + 1) – 1 n2 – n + 1 1n2 – n + 1 Xét hai trường hợp: + n2 – n + 1 = 1 n2 – n = 0 n(n – 1) = 0 n = 0, n = 1 thử lại thấy t/m đề bài + n2 – n + 1 = - 1 n2 – n + 2 = 0 , không có giá trị của n thoả mãn VD 3: Tìm số tự nhiên n sao cho 2n - 1 chia hết cho 7 Giải: Ta có luỹ thừa của 2 gần với bội của 7 là 23 = 8 = 7 + 1 Nếu n = 3k (k N) thì 2n - 1= 23k – 1 = (23)k – 1 = 8 k - 1k8 – 1 = 7 Nếu n = 3k + 1(k N) thì 2n - 1 = 23k+1 – 1 = 8k . 2 – 1= 2(8k – 1) + 1 = 2. BS7 + 1 2n - 1 không chia hết cho 7 Nếu n = 3k +2(k N) thì 2n - 1 = 23k+2 – 1= 4.23k – 1 = 4( 8k – 1) + 3 = 4.BS7 + 3 2n - 1 không chia hết cho 7 Vậy 2n - 17 n = 3k (k N) II. Bài tập Bài 1: Chứng minh rằng: a/ n3 + 6n2 + 8n chia hêt ch 48 với mọi số n chẵn b/ n4 – 10n2 + 9 chia hết cho 384 với mọi số n lẻ Giải a/ n3 + 6n2 + 8n = n(n2 + 6n + 8) = n( n2 + 4n + 2n + 8) = n[n(n + 4) + 2(n + 4)] = n(n+2)(n + 4) Với n chẵn, n = 2k ta có: n3 + 6n2 + 8n = 2k(2k + 2)(2k + 4) = 8.k. (k + 1)k + 2) 8 b/ n4 – 10n2 + 9 = n4 – n2 – 9n2 + 9 = n2(n2 – 1)- 9(n2 – 1) = (n2 – 1)(n2 - 9) = (n – 1)(n+1)(n-3)(n+3) Với n lẻ, n = 2k +1, ta có: n4 – 10n2 + 9 = (2k +1 – 1)(2k + 1+1)(2k + 1 – 3)( 2k + 1 +3) = 2k(2k+2)(2k-2)(2k+4)= 16k(k+1)(k-1)(k+2) 16 Bài 2: Chứng minh rằng a/ n6 + n4 -2n2 chia hết cho 72 với mọi số nguyên n b/ 32n – 9 chia hết cho 72 với mọi số nguyên dương n Giải: Ta có: A= n6 + n4 -2n2 = n2(n4+n2 -2)= n2(n4 + 2n2 –n2 – 2)= n2[(n2 +2)- (n2 +2)] = n2(n2 + 2)(n2 – 1). Ta lại có: 72 = 8.9 với (8,9) = 1 Xét các trường hợp: + Với n = 2kA = (2k)2(2k + 1) (2k -1)(4k2 +2) = 8k2(2k + 1) (2k -1)(2k2 +1) 8 + Với n = 2k +1 A = (2k + 1)2(2k +1 – 1)2= (4k2 + 4k +1)4k2 8 Tương tự xét các trường hợp n = 3a, n= 3a 1 để chứng minh A9 Vậy A8.9 hay A72 Bài 3: Cho a là số nguyên tố lớn hơn 3. Chứng minh rằng a2 – 1 chia hết cho 24 Giải: Vì a2 là số nguyên tố lớn hơn 3 nên a lẻa2 là số chính phương lẻ a2 chia cho 8 dư 1 a2 – 1 chia hết cho 8 (1) Mặt khác a là số nguyên tố lớn hơn 3 a không chia hết cho 3 a2 là số chính phương không chia hết cho 3a2 chia cho 3 dư 1 a2 – 1 chia hết cho 3 (2) Mà (3,8) = 1 (3) Từ (1), (2), (3) a2 – 1 chia hết cho 24 Bài 4: Chứng minh rằng: Nếu số tự nhiên a không chia hết cho 7 thì a6 -1 chia hết cho 7 Giải: Bài toán là trường hợp đặc biệt của định lý nhỏ Phéc ma: - Dạng 1: Nếu p là số nguyên tố và a là một số nguyên thì ap – a chia hết cho p - Dạng 2: Nếu a là một số nguyên không chia hết cho số nguyên tố p thì ap-1-1 chia hết cho p Thật vậy, ta có a6 -1 = (a3 + 1) (a3 - 1) Nếu a = 7k 1 (k N) thì a3 = ( 7k 1)3 = BS7 1 a3 - 17 Nếu a = 7k 2 (k N) thì a3 = ( 7k 2)3 = BS7 23 = BS7 8 a3 - 17 Nếu a = 7k 3 (k N) thì a3 = ( 7k 3)3 = BS7 33 = BS7 27 a3 + 17 Ta luôn có a3 + 1 hoặc a3 – 1 chia hết cho 7. Vậy a6 – 1 chia hết cho 7 Bài 5: Chứng minh rằng: Nếu n là lập phương của một số tự nhiên thì (n-1)n(n + 1) chia hết cho 504 Giải: Ta có 504 = 32 . 7.8 và 7,8,9 nguyên tố cùng nhau từng đôi một Vì n là lập phương của một số tự nhiên nên đặt n = a3 Cần chứng minh A=(a3-1)a3(a3 + 1) chia hết cho 504 Ta có: + Nếu a chẵn a3 chia hết cho 8 Nếu a lẻ a3-1và a3 + 1 là hai số chẵn liên tiếp(a3-1) (a3 + 1) chi hết cho 8 Vậy A8 , nN (1) + Nếu a7 a37 A7 Nếu a không chia hết cho 7 thì a6 – 17(a3-1) (a3 + 1) 7(Định lí Phéc ma) Vậy A7 , nN (2) + Nếu a3 a39 A9 Nếu a không chia hấe cho 3 a = 3k 1 a3 = ( 3k 3)3= BS91 a3 – 1 = BS9+1 – 1 9 a3 + 1 = BS9- 1 + 1 9 Vậy A9 , nN (3) Từ (1), (2), (3) A9 , nN Bài 6: Tìm số tự nhiên n để giá trị của biểu thức sau là số nguyên tố: a/ 12n2 – 5n – 25 b/ 8n2 + 10n +3 c/ Giải: a/ Phân tích thành nhân tử: 12n2 – 5n – 25 = 12n2 +15n – 20n – 25 = 3n(4n + 5) – 5(4n +5) = (4n +5)(3n –5) Do 12n2 – 5n – 25 là số nguyên tố và 4n +5 > 0 nên 3n – 5 > 0. Ta lại có: 3n – 5 < 4n +5(vì n 0) nên để 12n2 – 5n – 25 là số ngưyên tố thì thừa số nhỏ phải bằng 1 hay 3n – 5 = 1 n = 2 Khi đó, 12n2 – 5n – 25 = 13.1 = 13 là số nguyên tố. Vậy với n = 2 thì giá trị của biểu thức 12n2 – 5n – 25 là số nguyên tố 13 b/ 8n2 + 10n +3 = (2n – 1)(4n + 3) Biến đổi tương tự ta được n = 0. Khi đó, 8n2 + 10n +3 là số nguyên tố 3 c/ A = . Do A là số tự nhiên nên n(n + 3) 4. Hai số n và n + 3 không thể cùng chẵn. Vậy hoặc n , hoặc n + 3 chia hết cho 4 - Nếu n = 0 thì A = 0, không là số nguyên tố - Nếu n = 4 thì A = 7, là số nguyên tố -Nếu n = 4k với kZ, k > 1 thì A = k(4k + 3) là tích của hai thừa số lớn hơn 1 nên A là hợp số - Nếu n + 3 = 4 thì A = 1, không là số nguyên tố - Nếu n + 3 = 4k với kZ, k > 1 thì A = k(4k - 3) là tích của hai thừa số lớn hơn 1 nên A là hợp số. Vậy với n = 4 thì là số nguyên tố 7 Bài 7: Đố vui: Năm sinh của hai bạn Một ngày của thập kỷ cuối cùng của thế kỷ XX, một nhườ khách đến thăm trường gặp hai học sinh. Người khách hỏi: Có lẽ hai em bằng tuổi nhau? Bạn Mai trả lời: Không, em hơn bạn em một tuổi. Nhưng tổng các chữ số của năm sinh mỗi chúng em đều là số chẵn. Vậy thì các em sinh năm 1979 và 1980, đúng không? Người khách đã suy luận thế nào? Giải: Chữ số tận cùng của năm sinh hai bạn phảI là 9 và 0 vì trong trường hợp ngựoc lại thì tổng các chữ số của năm sinh hai bạn chỉ hơn kém nhau là 1, không thể cùng là số chẵn. Gọi năm sinh của Mai là thì 1 +9+a+9 = 19 + a. Muốn tổng này là số chẵn thì a{1; 3; 5; 7; 9}. Hiển nhiên Mai không thể sinh năm 1959 hoặc 1999. Vậy Mai sinh năm 1979, bạn của Mai sinh năm 1980. C/ Hướng dẫn về nhà ễn tập: TÍNH CHẤT CHIA HẾT TRONG N Ngày soạn: 13/09/2011 Buổi 2: Chuyờn đề 2 TÍNH CHẤT CHIA HẾT TRONG N A/ Mục tiờu: * Kiến thức: HS ụn lại một số dấu hiệu chia hết * Kĩ năng: Làm cỏc dạng toỏn:- Một số dấu hiệu chia hết B /Tiến trỡnh dạy học Dạng 1/Một số dấu hiệu chia hết – Vớ dụ I.Một số dấu hiệu chia hết 1. Chia hết cho 2, 5, 4, 25 và 8; 125. ( hoặc 25) ( hoặc 25) ( hoặc 125) ( hoặc 125) 2. Chia hết cho 3; 9. (hoặc 9) ( hoặc 9) Nhận xét: Dư trong phép chia N cho 3 ( hoặc 9) cũng chính là dư trong phép chia tổng các chữ số của N cho 3 ( hoặc 9). 3. Dấu hiệu chia hết cho 11: Cho 4.Dấu hiệu chia hết cho 101 II.Vớ dụ Ví dụ 1: Tìm các chữ số x, y để: a) b) Giải: a) Để ta phải có chia hết cho 9 và 5 y = 0 hoặc y = 5 Với y = 0 thì từ ta phải có 1+3+5+x+4 khi đó ta có số 13554 với x = 5 thì từ : ta phải có 1+3+5+x+4 +5 lúc đóta có 2 số: 135045; 135945. b) Ta có Vì nên bằng 72 hoặc 144. + Với =72 thì =08, ta có số: 123408. + Với =14 thì =80, ta có số 123480 Ví dụ 2 Tìm các chữ số x, y để Giải: Ta có: 1375 = 11.125. Vậy số cần tìm là 713625 Ví dụ 3 a) Hỏi số có chia hết cho 101 không? b) Tìm n để Giải: a) Ghép 2 chữ số liên tiếp nhau thì A1991 có 2 cặp số là 91;19 Ta có: 1991.91-1991.19 = 1991. 72 101 nên b) : Dạng II. MỘT SỐ ĐỊNH LÍ VỀ PHẫP CHIA HẾT 1. Định lý về phép chia hết: a) Định lý Cho a, b là các số nguyên tuỳ ý, , khi đó có 2 số nguyên q, r duy nhất sao cho : với , a là só bị chia, b là số chia, q là thương số và r là số dư. Đặc biệt với r = 0 thì a = b.q Khi đó ta nói a chia hết cho b hay b là ước của a, ký hiệu . có số nguyên q sao cho a = b.q Vậy b) Tính chất a) Nếu và thì b) Nếu và thì a = b c) Nếu , và (b,c) = 1 thì d) Nếu và (c,b) = 1 thì 2. Tính chất chia hết của một tổng, một hiệu, một tích. - Nếu - Nếu - Nếu .b - Nếu a m (n là số tự nhiên) 3.Một số tớnh chất khỏc: Trong n số tự nhiờn liờn tiếp cú một số chia hết cho n Tớch n số tự nhiờn liờn tiếp chia hết cho n! A ; A và (a;b) = 1 VD:Chứng minh rằng với mọi số nguyờn dương n ta cú: Giải: Bài tập: 1.Chứng minh rằng a. với n chẳn b. với n lẻ Chứng minh rằng : với n nguyờn CMR với mọi số nguyờn a biểu thức sau: a) a(a – 1) – (a +3)(a + 2) chia hết cho 6. b) a(a + 2) – (a – 7)(a -5) chia hết cho 7. c) (a2 + a + 1)2 – 1 chia hết cho 24 d) n3 + 6n2 + 8n chia hết cho 48 (mọi n chẵn) CMR với mọi số tự nhiờn n thỡ biểu thức: a) n(n + 1)(n +2) chia hết cho 6 b) 2n ( 2n + 2) chia hết cho 8. C/ Hướng dẫn về nhà sao cho A = HD: (a + b) 9 và (a + b) = 9k k = 1 a + b = 9 9a = 9.8 = 72 a = 8 và b = 1 B = HD: Đặt ; 99x = (x + y)(x + y - 1) 992 Xột 2 khả năng ĐS: B = 9801;2025;3025 = sao cho Tỡm Tớnh giỏ trị của biểu thức: 1/ Cho x +y = 3, tớnh giỏ trị A = x2 + 2xy + y2 – 4x – 4y + 3. 2/ Cho x +y = 1.Tớnh giỏ trị B = x3 + y3 + 3xy 3/ Cho x – y =1.Tớnh giỏ trị C = x3 – y3 – 3xy. 4/ Cho x + y = m và x.y = n.Tớnh giỏ trị cỏc biểu thức sau theo m,n. a) x2 + y2 b) x3 + y3 c) x4 + y4 5/ Cho x + y = m và x2 + y2 = n.Tớnh giỏ trị biểu thức x3 + y3 theo m và n. 6/ a) Cho a +b +c = 0 và a2 + b2 + c2 = 2.Tớnh giỏ trị của bt: a4 + b4 + c4. b) Cho a +b +c = 0 và a2 + b2 + c2 = 1.Tớnh giỏ trị của bt: a4 + b4 + c4. Ngày soạn: 13/09/2011 Buổi 3: Chuyờn đề 3 ễn tập: SỐ CHÍNH PHƯƠNG A/ Mục tiờu: * Kiến thức: HS ụn lại ĐN và TC của số chớnh phương * Kĩ năng: Làm cỏc dạng toỏn: B/Tiến trỡnh dạy học I. ĐỊNH NGHĨA: Số chớnh phương là số bằng bỡnh phương đỳng của một số nguyờn. II. TÍNH CHẤT: 1. Số chớnh phương chỉ cú thể cú chữ số tận cựng bằng 0, 1, 4, 5, 6, 9 ; khụng thể cú chữ số tận cựng bằng 2, 3, 7, 8. 2. Khi phõn tớch ra thừa số nguyờn tố, số chớnh phương chỉ chứa cỏc thừa số nguyờn tố với số mũ chẵn. 3. Số chớnh phương chỉ cú thể cú một trong hai dạng 4n hoặc 4n + 1. Khụng cú số chớnh phương nào cú dạng 4n + 2 hoặc 4n + 3 (n N). 4. Số chớnh phương chỉ cú thể cú một trong hai dạng 3n hoặc 3n + 1. Khụng cú số chớnh phương nào cú dạng 3n + 2 (n N). 5. Số chớnh phương tận cựng bằng 1 hoặc 9 thỡ chữ số hàng chục là chữ số chẵn. Số chớnh phương tận cựng bằng 5 thỡ chữ số hàng chục là 2 Số chớnh phương tận cựng bằng 4 thỡ chữ số hàng chục là chữ số chẵn. Số chớnh phương tận cựng bằng 6 thỡ chữ số hàng chục là chữ số lẻ. 6. Số chớnh phương chia hết cho 2 thỡ chia hết cho 4. Số chớnh phương chia hết cho 3 thỡ chia hết cho 9. Số chớnh phương chia hết cho 5 thỡ chia hết cho 25. Số chớnh phương chia hết cho 8 thỡ chia hết cho 16. III. MỘT SỐ DẠNG BÀI TẬP VỀ SỐ CHÍNH PHƯƠNG DẠNG1: CHỨNG MINH MỘT SỐ LÀ SỐ CHÍNH PHƯƠNG Bài 1: Chứng minh rằng với mọi số nguyờn x, y thỡ A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y4 là số chớnh phương. Ta cú A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y4 = (x2 + 5xy + 4y2)( x2 + 5xy + 6y2) + y4 Đặt x2 + 5xy + 5y2 = t ( t Z) thỡ A = (t - y2)( t + y2) + y4 = t2 –y4 + y4 = t2 = (x2 + 5xy + 5y2)2 V ỡ x, y, z Z nờn x2 Z, 5xy Z, 5y2 Z x2 + 5xy + 5y2 Z Vậy A là số chớnh phương. Bài 2: Chứng minh tớch của 4 số tự nhiờn liờn tiếp cộng 1 luụn là số chớnh phương. Gọi 4 số tự nhiờn, liờn tiờp đú là n, n + 1, n+ 2, n + 3 (n N). Ta cú n(n + 1)(n + 2)(n + 3) + 1 = n.(n + 3(n + 1)(n + 2) + 1 = (n2 + 3n)( n2 + 3n + 2) + 1 (*) Đặt n2 + 3n = t (t N) thỡ (*) = t( t + 2 ) + 1 = t2 + 2t + 1 = ( t + 1 )2 = (n2 + 3n + 1)2 Vỡ n N nờn n2 + 3n + 1 N Vậy n(n + 1)(n + 2)(n + 3) + 1 là số chớnh phương. Bài 3: Cho S = 1.2.3 + 2.3.4 + 3.4.5 + . . . + k(k+1)(k+2) Chứng minh rằng 4S + 1 là số chớnh phương . Ta cú k(k+1)(k+2) = k(k+1)(k+2).4 = k(k+1)(k+2).[(k+3) – (k-1)] = k(k+1)(k+2)(k+3) - k(k+1)(k+2)(k-1) S =.1.2.3.4 -.0.1.2.3 + .2.3.4.5 -.1.2.3.4 +…+ k(k+1)(k+2)(k+3) - k(k+1)(k+2)(k-1) = k(k+1)(k+2)(k+3) 4S + 1 = k(k+1)(k+2)(k+3) + 1 Theo kết quả bài 2 k(k+1)(k+2)(k+3) + 1 là số chớnh ph ương. Bài 4: Cho dóy số 49; 4489; 444889; 44448889; … Dóy số trờn được xõy dựng bằng cỏch thờm số 48 vào giữa số đứng trước nú. Chứng minh rằng tất cả cỏc số của dóy trờn đều là số chớnh phương. Ta cú 44…488…89 = 44…488..8 + 1 = 44…4 . 10n + 8 . 11…1 + 1 n chữ số 4 n-1 chữ số 8 n chữ số 4 n chữ số 8 n chữ số 4 n chữ số 1 = 4. . 10n + 8. + 1 2 = = = Ta thấy 2.10n +1=200…01 cú tổng cỏc chữ số chia hết cho 3 nờn nú chia hết cho 3 2 n-1 chữ số 0 Z hay cỏc số cú dạng 44…488…89 là số chớnh phương. Bài 5: Chứng minh rằng cỏc số sau đõy là số chớnh phương: A = 11…1 + 44…4 + 1 2n chữ số 1 n chữ số 4 B = 11…1 + 11…1 + 66…6 + 8 2n chữ số 1 n+1 chữ số 1 n chữ số 6 C = 44…4 + 22…2 + 88…8 + 7 2n chữ số 4 n+1 chữ số 2 n chữ số 8 2 2 2 Kết quả: A = ; B = ; C = Bài 6: Chứng minh rằng cỏc số sau là số chớnh phương: a. A = 22499…9100…09 n-2 chữ số 9 n chữ số 0 b. B = 11…155…56 n chữ số 1 n-1 chữ số 5 A = 224.102n + 99…9.10n+2 + 10n+1 + 9 = 224.102n + ( 10n-2 – 1 ) . 10n+2 + 10n+1 + 9 = 224.102n + 102n – 10n+2 + 10n+1 + 9 = 225.102n – 90.10n + 9 = ( 15.10n – 3 ) 2 A là số chớnh phương b. B = 111…1555…5 + 1 = 11…1.10n + 5.11…1 + 1 n chữ số 1 n chữ số 5 n chữ số 1 n chữ số 1 = . 10n + 5. + 1 = 2 = = là số chớnh phương ( điều phải chứng minh) Bài 7: Chứng minh rằng tổng cỏc bỡnh phương của 5 số tự nhiờn liờn tiếp khụng thể là một số chớnh phương Gọi 5 số tự nhiờn liờn tiếp đú là n-2, n-1, n , n+1 , n+2 (n N , n ≥2 ). Ta cú ( n-2)2 + (n-1)2 + n2 + ( n+1)2 + ( n+2)2 = 5.( n2+2) Vỡ n2 khụng thể tận cựng bởi 3 hoặc 8 do đú n2+2 khụng thẻ chia hết cho 5 5.( n2+2) khụng là số chớnh phương hay A khụng là số chớnh phương Bài 8: Chứng minh rằng số cú dạng n6 – n4 + 2n3 + 2n2 trong đú nN và n>1 khụng phải là số chớnh phương n6 – n4 + 2n3 +2n2 = n2.( n4 – n2 + 2n +2 ) = n2.[ n2(n-1)(n+1) + 2(n+1) ] = n2[ (n+1)(n3 – n2 + 2) ] = n2(n+1).[ (n3+1) – (n2-1) ] = n2( n+1 )2.( n2–2n+2) Với nN, n >1 thỡ n2-2n+2 = (n - 1)2 + 1 > ( n – 1 )2 và n2 – 2n + 2 = n2 – 2(n - 1) < n2 Vậy ( n – 1)2 < n2 – 2n + 2 < n2 n2 – 2n + 2 khụng phải là một số chớnh phương. Bài 9: Cho 5 số chớnh phương bất kỡ cú chữ số hàng chục khỏc nhau cũn chữ số hàng đơn vị đều là 6. Chứng minh rằng tổng cỏc chữ số hàng chục của 5 số chớnh phương đú là một số chớnh phương Cỏch 1: Ta biết một số chớnh phương cú chữ số hàng đơn vị là 6 thỡ chữ số hàng chục của nú là số lẻ. Vỡ vậy chữ số hàng chục của 5 số chớnh phương đó cho là 1,3,5,7,9 khi đú tổng của chỳng bằng 1 + 3 + 5 + 7 + 9 = 25 = 52 là số chớnh phương Cỏch 2: Nếu một số chớnh phương M = a2 cú chữ số hàng đơn vị là 6 thỡ chữ số tận cựng của a là 4 hoặc 6 a2 a2 4 Theo dấu hiệu chia hết cho 4 thỡ hai chữ số tận cựng của M chỉ cú thể là 16, 36, 56, 76, 96 Ta cú: 1 + 3 + 5 + 7 + 9 = 25 = 52 là số chớnh phương. Bài 10: Chứng minh rằng tổng bỡnh phương của hai số lẻ bất kỳ khụng phải là một số chớnh phương. a và b lẻ nờn a = 2k+1, b = 2m+1 (Với k, m N) a2 + b2 = (2k+1)2 + (2m+1)2 = 4k2 + 4k + 1 + 4m2 + 4m + 1 = 4(k2 + k + m2 + m) + 2 = 4t + 2 (Với t N) Khụng cú số chớnh phương nào cú dạng 4t + 2 (t N) do đú a2 + b2 khụng thể là số chớnh phương. Bài 11: Chứng minh rằng nếu p là tớch của n số nguyờn tố đầu tiờn thỡ p-1 và p+1 khụng thể là cỏc số chớnh phương. Vỡ p là tớch của n số nguyờn tố đầu tiờn nờn p2 và p khụng chia hết cho 4 (1) a. Giả sử p+1 là số chớnh phương . Đặt p+1 = m2 (m N) Vỡ p chẵn nờn p+1 lẻ m2 lẻ m lẻ. Đặt m = 2k+1 (k N). Ta cú m2 = 4k2 + 4k + 1 p+1 = 4k2 + 4k + 1 p = 4k2 + 4k = 4k(k+1) 4 mõu thuẫn với (1) p+1 là số chớnh phương p = 2.3.5… là số chia hết cho 3 p-1 cú dạng 3k+2. Khụng cú số chớnh phương nào cú dạng 3k+2 p-1 khụng là số chớnh phương . Vậy nếu p là tớch n số nguyờn tố đầu tiờn thỡ p-1 và p+1 khụng là số chớnh phương Bài 12: Giả sử N = 1.3.5.7…2007. Chứng minh rằng trong 3 số nguyờn liờn tiếp 2N-1, 2N và 2N+1 khụng cú số nào là số chớnh phương. 2N-1 = 2.1.3.5.7…2007 – 1 Cú 2N 3 2N-1 khụng chia hết cho 3 và 2N-1 = 3k+2 (k N) 2N-1 khụng là số chớnh phương. 2N = 2.1.3.5.7…2007 Vỡ N lẻ N khụng chia hết cho 2 và 2N 2 nhưng 2N khụng chia hết cho 4. 2N chẵn nờn 2N khụng chia cho 4 dư 1 2N khụng là số chớnh phương. 2N+1 = 2.1.3.5.7…2007 + 1 2N+1 lẻ nờn 2N+1 khụng chia hết cho 4 2N khụng chia hết cho 4 nờn 2N+1 khụng chia cho 4 dư 1 2N+1 khụng là số chớnh phương. Bài 13: Cho a = 11…1 ; b = 100…05 2008 chữ số 1 2007 chữ số 0 Chứng minh là số tự nhiờn. Cỏch 1: Ta cú a = 11…1 = ; b = 100…05 = 100…0 + 5 = 102008 + 5 2 2008 chữ số 1 2007 chữ số 0 2008 chữ số 0 ab+1 = + 1 = = 2 = = Ta thấy 102008 + 2 = 100…02 3 nờn N hay là số tự nhiờn. 2007 chữ số 0 Cỏch 2: b = 100…05 = 100…0 – 1 + 6 = 99…9 + 6 = 9a +6 2007 chữ số 0 2008 chữ số 0 2008 chữ số 9 ab+1 = a(9a +6) + 1 = 9a2 + 6a + 1 = (3a+1)2 = = 3a + 1 N DẠNG 2: TèM GIÁ TRỊ CỦA BIẾN ĐỂ BIỂU THỨC LÀ SỐ CHÍNH PHƯƠNG Bài1: Tỡm số tự nhiờn n sao cho cỏc số sau là số chớnh phương: a. n2 + 2n + 12 b. n ( n+3 ) c. 13n + 3 d. n2 + n + 1589 Giải a. Vỡ n2 + 2n + 12 là số chớnh phương nờn đặt n2 + 2n + 12 = k2 (k N) (n2 + 2n + 1) + 11 = k2 k2 – (n+1)2 = 11 (k+n+1)(k-n-1) = 11 Nhận xột thấy k+n+1 > k-n-1 và chỳng là những số nguyờn dương, nờn ta cú thể viết (k+n+1)(k-n-1) = 11.1 k+n+1 = 11 k = 6 k – n - 1 = 1 n = 4 b. Đặt n(n+3) = a2 (n N) n2 + 3n = a2 4n2 + 12n = 4a2 (4n2 + 12n + 9) – 9 = 4a2 (2n + 3)- 4a2 = 9 (2n + 3 + 2a)(2n + 3 – 2a) = 9 Nhận xột thấy 2n + 3 + 2a > 2n + 3 – 2a và chỳng là những số nguyờn dương, nờn ta cú thể viết (2n + 3 + 2a)(2n + 3 – 2a) = 9.1 2n + 3 + 2a = 9 n = 1 2n + 3 – 2a = 1 a = 2 c. Đặt 13n + 3 = y2 ( y N) 13(n – 1) = y2 – 16 13(n – 1) = (y + 4)(y – 4) (y + 4)(y – 4) 13 mà 13 là số nguyờn tố nờn y + 4 13 hoặc y – 4 13 y = 13k 4 (Với k N) 13(n – 1) = (13k 4 )2 – 16 = 13k.(13k 8) n = 13k2 8k + 1 Vậy n = 13k2 8k + 1 (Với k N) thỡ 13n + 3 là số chớnh phương. Đặt n2 + n + 1589 = m2 (m N) (4n2 + 1)2 + 6355 = 4m2 (2m + 2n +1)(2m – 2n -1) = 6355 Nhận xột thấy 2m + 2n +1> 2m – 2n -1 > 0 và chỳng là những số lẻ, nờn ta cú thể viết (2m + 2n +1)(2m – 2n -1) = 6355.1 = 1271.5 = 205.31 = 155.41 Suy ra n cú thể cú cỏc giỏ trị sau: 1588; 316; 43; 28. Bài 2: Tỡm a để cỏc số sau là những số chớnh phương: a2 + a + 43 a2 + 81 a2 + 31a + 1984 Kết quả: a. 2; 42; 13 b. 0; 12; 40 c. 12; 33; 48; 97; 176; 332; 565; 1728 Bài 3: Tỡm số tự nhiờn n ≥ 1 sao cho tổng 1! + 2! + 3! + … + n! là một số chớnh phương . Với n = 1 thỡ 1! = 1 = 12 là số chớnh phương . Với n = 2 thỡ 1! + 2! = 3 khụng là số chớnh phương Với n = 3 thỡ 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 32 là số chớnh phương Với n ≥ 4 ta cú 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 cũn 5!; 6!; …; n! đều tận cựng bởi 0 do đú 1! + 2! + 3! + … + n! cú tận cựng bởi chữ số 3 nờn nú khụng phải là số chớnh phương . Vậy cú 2 số tự nhiờn n thỏa món đề bài là n = 1; n = 3. Bài 4: Tỡm n N để cỏc số sau là số chớnh phương: n2 + 2004 ( Kết quả: 500; 164) (23 – n)(n – 3) ( Kết quả: 3; 5; 7; 13; 19; 21; 23) n2 + 4n + 97 2n + 15 Bài 5: Cú hay khụng số tự nhiờn n để 2006 + n2 là số chớnh phương. Giả sử 2006 + n2 là số chớnh phương thỡ 2006 + n2 = m2 (m N) Từ đú suy ra m2 – n2 = 2006 (m + n)(m - n) = 2006 Như vậy trong 2 số m và n phải cú ớt nhất 1 số chẵn (1) Mặt khỏc m + n + m – n = 2m 2 số m + n và m – n cựng tớnh chẵn lẻ (2) Từ (1) và (2) m + n và m – n là 2 số chẵn (m + n)(m - n) 4 Nhưng 2006 khụng chia hết cho 4 Điều giả sử sai. Vậy khụng tồn tại số tự nhiờn n để 2006 + n2 là số chớnh phương. 2 Bài 6: Biết x N và x>2. Tỡm x sao cho x(x-1).x(x-1) = (x-2)xx(x-1) Đẳng thức đó cho được

File đính kèm:

  • docGiao an BDHSG Toan.doc