Giáo án Đại số lớp 10 - Nguyễn Thị Hà Ân - Cung và góc lượng giác

I. Mục tiêu:

I.1. Kiến thức:

- Hiểu các khái niệm đường tròn định hướng, đường tròn lượng giác, cung và góc lượng giác, số đo cung và góc lượng giác.

- Phân biệt được cung hình học và cung lượng giác, biểu diễn cung hay góc trên đường tròn lượng giác.

- Biết 2 đơn vị đo góc là độ và rađian, mối quan hệ giữa các đơn vị này.

I.2. Kỹ năng:

- Biết đổi đơn vị từ độ sang rađian và ngược lại.

- Tính được độ dài cung tròn, số đo cung và góc lượng giác.

- Xác định được điểm cuối của 1 cung lượng giác hay tia cuối của 1 góc lượng giác trên đường tròn lượng giác.

I.3. Tư duy, thái độ:

- Nghiêm túc, chuẩn bị bài trước, nắm vững kiến thức đã học, tự giác, tích cực trong học tập.

- Biết vận dụng vào nhiều bài toán, quy lạ về quen, ứng dụng toán học vào thực tiễn.

- Rèn luyện cho HS tính cẩn thận, chính xác trong vẽ hình và tính toán.

II. Chuẩn bị của GV và HS:

II.1. Chuẩn bị của GV:

- Giáo án, sách giáo khoa, các hoạt động cho HS thực hiện.

- Chuẩn bị phấn, thước thẳng, compa, bảng phụ, hình ảnh và một số đồ dùng khác.

II.2. Chuẩn bị của HS:

- Xem trước bài, chuẩn bị bài tập SGK.

- Sách giáo khoa, vở, máy tính, thước thẳng, compa, .

III. Phương pháp dạy học:

- Thuyết trình, đàm thoại kết hợp gợi mở vấn đề, giải quyết vấn đề.

- Đan xem hoạt động nhóm.

 

docx6 trang | Chia sẻ: liennguyen452 | Lượt xem: 7240 | Lượt tải: 1download
Bạn đang xem nội dung tài liệu Giáo án Đại số lớp 10 - Nguyễn Thị Hà Ân - Cung và góc lượng giác, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Ngày soạn: 28/02/2013 Ngày dạy: Số tiêt: 2 Dạy lớp: 10A3 Chương VI: CUNG VÀ GÓC LƯỢNG GIÁC. CÔNG THỨC LƯỢNG GIÁC. §1: CUNG VÀ GÓC LƯỢNG GIÁC Mục tiêu: I.1. Kiến thức: - Hiểu các khái niệm đường tròn định hướng, đường tròn lượng giác, cung và góc lượng giác, số đo cung và góc lượng giác. - Phân biệt được cung hình học và cung lượng giác, biểu diễn cung hay góc trên đường tròn lượng giác. - Biết 2 đơn vị đo góc là độ và rađian, mối quan hệ giữa các đơn vị này. I.2. Kỹ năng: - Biết đổi đơn vị từ độ sang rađian và ngược lại. - Tính được độ dài cung tròn, số đo cung và góc lượng giác. - Xác định được điểm cuối của 1 cung lượng giác hay tia cuối của 1 góc lượng giác trên đường tròn lượng giác. I.3. Tư duy, thái độ: - Nghiêm túc, chuẩn bị bài trước, nắm vững kiến thức đã học, tự giác, tích cực trong học tập. - Biết vận dụng vào nhiều bài toán, quy lạ về quen, ứng dụng toán học vào thực tiễn. - Rèn luyện cho HS tính cẩn thận, chính xác trong vẽ hình và tính toán. Chuẩn bị của GV và HS: II.1. Chuẩn bị của GV: - Giáo án, sách giáo khoa, các hoạt động cho HS thực hiện. - Chuẩn bị phấn, thước thẳng, compa, bảng phụ, hình ảnh và một số đồ dùng khác. II.2. Chuẩn bị của HS: - Xem trước bài, chuẩn bị bài tập SGK. - Sách giáo khoa, vở, máy tính, thước thẳng, compa, ... Phương pháp dạy học: - Thuyết trình, đàm thoại kết hợp gợi mở vấn đề, giải quyết vấn đề. - Đan xem hoạt động nhóm. Tiến trình bài học: IV.1. Ổn định lớp: Kiểm tra sĩ số lớp. IV.2. Kiểm tra bài cũ: Nhận xét bài kiểm tra tập trung vừa rồi. IV.3. Bài mới: CUNG VÀ GÓC LƯỢNG GIÁC Hoạt động của giáo viên Hoạt động của học sinh Nội dung ghi bảng - GV giới thiệu nội dung bài học mới - Chú ý theo dõi Chương VI: CUNG VÀ GÓC LƯỢNG GIÁC. CÔNG THỨC LƯỢNG GIÁC. §1:CUNG VÀ GÓC LƯỢNG GIÁC w Hoạt động 1: Tìm hiểu khái niệm đường tròn định hướng và cung lượng giác - GV treo bảng phụ (hoặc vẽ Hình 39/SGK/133) lên bảng. - GV dựa vào hình vẽ, dẫn dắt đi đến khái niệm đường tròn định hướng thông qua hoạt động mở đầu như SGK. + CH1: Mỗi điểm trên trục số được đặt tương ứng với mấy điểm trên đường tròn? + CH2: Mỗi điểm trên đường tròn ứng với mấy điểm trên trục số? - GV nhận xét, sữa chữa - GV nhấn mạnh mỗi số thực dương t trên tia At tăng ứng với chuyển động của điểm M trên đường tròn theo chiều ngược kim đồng hồ, hay ngược lại. Từ đó rút ra khái niệm đường tròn định hướng. (Hình 40/SGK/134) - HS chú ý, cùng xây dựng bài và trả lời câu hỏi. - HS1: Một điểm trên trục số ứng với một điểm trên đường tròn. - HS2: Một điểm trên đường tròn ứng với vô số điểm trên trục số. - HS chú ý theo dõi các khái niệm GV nêu và ghi vào vở theo SGK/134. I. KHÁI NIỆM CUNG VÀ GÓC LƯỢNG GIÁC 0 M1 1 2 A -1 -2 N1 M2 A' t' t Hình 39 1. Đường tròn định hướng và cung lượng giác Hình 40 a. Khái niệm: Đường tròn định hướng là 1 đường tròn trên đó ta đã chọn 1 chiều chuyển động gọi là chiều dương, chiều ngược lại gọi là chiều âm. b. Quy ước: Ta chọn chiều ngược với chiều dương của kim đồng hồ là chiều dương - GV nêu khái niệm cung lượng giác - HS chú ý theo dõi khái niệm GV nêu và ghi vào vở theo SGK/134. c. Khái niệm: Trên đường tròn định hướng cho 2 điểm A,B. Một điểm M di động trên đường tròn luôn theo 1 chiều (âm hoặc dương) từ A đến B tạo nên 1 cung lượng giác có điểm đầu A điểm cuối B. - GV treo bảng phụ (hoặc vẽ Hình 41/SGK/134) lên bảng. Đặt câu hỏi: + CH3: Xác định chiều chuyển động của M và số vòng quay? + CH4: Với 2 điểm A,B đã cho trên đường tròn định hướng có bao nhiêu cung lượng giác điểm đầu A, điểm cuối B? - GV nhận xét, sữa chữa. Xoay thước kẻ để HS dễ thấy có vô số cung lượng giác như thế. - Nhấn mạnh cách viết và phân biệt cung hình học và cung lượng giác - HS3 trả lời: a. chiều dương, 0 vòng b. chiều dương, 1 vòng c. chiều dương, 2 vòng d. chiều âm, 0 vòng - HS4: Với 2 điểm A,B đã cho trên đường tròn định hướng có vô số cung lượng giác điểm đầu A, điểm cuối B - HS phân biệt cung hình học và cung lượng giác d. Ví dụ: a. b. c. d. Hình 41 Kí hiệu:Mỗi cung như trên được kí hiệu là AB Chú ý: Trên đường tròn định hướng, lấy 2 điểm A,B thì: - Kí hiệu AB chỉ 1 cung hình học (cung lớn hoặc cung bé) hoàn toàn xác định. - Kí hiệu AB chỉ 1 cung lượng giác điểm đầu A, điểm cuối B. w Hoạt động 2: Tìm hiểu khái niệm góc lượng giác và đường tròn lượng giácO C M D Hình 42 - GV treo bảng phụ (hoặc vẽ Hình 42/SGK/135) lên bảng. - GV dẫn dắt đi đến khái niệm góc lượng giác. - HS chú ý, cùng xây dựng bài và trả lời câu hỏi. - HS chú ý theo dõi khái niệm GV nêu và ghi vào vở theo SGK/135. 2. Góc lượng giác. Trên đường tròn định hướng 1 điểm M di động trên đường tròn từ C đến D tạo nên cung lượng giác CD. Khi đó, tia OM quay quanh gốc O tạo ra 1 góc lượng giác, có tia đầu là OC, tia cuối là OD. Kí hiệu: OC,OD + CH: Với mỗi cung lượng giác có bao nhiêu góc lượng giác và ngược lại. - GV nhận xét, sữa chữa. - HS trả lời: Mỗi cung lượng giác ứng với 1 góc lượng giác và ngược lại. B'(0;-1) x + A(1;0) O B(0;1) A'(-1;0) y Hình 43 - GV treo bảng phụ (hoặc vẽ Hình 43/SGK/135) lên bảng. - GV dẫn dắt đi đến khái niệm đường tròn lượng giác. Nhấn mạnh các điểm đặc biệt của đường tròn. + Điểm gốc A1,0 + Các điểm A'-1,0; B0,1;B'0,-1 - GV củng cố, nhắc lại các khái niệm trên. - HS chú ý theo dõi khái niệm GV nêu và ghi vào vở theo SGK/135. 3. Đường tròn lượng giác. Trong Oxy, vẽ đường tròn đơn vị định hướng tâm O, bán kính R=1 Đường tròn này cắt 2 trục toạ độ tại 4 điểm A1,0 A'-1,0;B0,1;B'0,-1 Ta lấy A1,0 làm gốc của đường tròn đó. Đường tròn xác định như trên gọi là đường tròn lượng giác (gốc A) w Hoạt động 3: Tìm hiểu đơn vị Rađian - GV nêu câu hỏi: + CH1: Hình 39, cung nhỏ AM1 có độ dài bao nhiêu, so với bán kính? - GV nhận xét và giới thiệu đơn vị rađian. - HS chú ý lắng nghe - HS1: Độ dài cung nhỏ AM1 bằng 1 đon vị, tức là bằng bán kính. II. SỐ ĐO CUNG VÀ GÓC LƯỢNG GIÁC 1. Độ và rađian a. Đơn vị rađian Trên đường tròn tuỳ ý, cung có độ dài bằng bán kính được gọi là cung có số đo 1 rad. + CH2: Công thức tính độ dài cung tròn trên đường tròn bán kính R? - HS2: Độ dài cung có số đo n° trên đường tròn bán kính R l=πRn180 b. Quan hệ giữa độ và rađian + CH3: Cho biết độ dài nửa cung tròn? + CH4: Cung nửa đường tròn có số đo bao nhiêu độ, rađian? - GV nhận xét và kết luận. - HS3: πR - HS4: Số đo nửa đường tròn: 180°; π rad 1°=π180 rad và 1 rad=180π° - Cho các số đo theo độ, HS điền số đo theo rađian và học thuộc tại lớp. Bảng chuyển đổi thông dụng: Độ 30° 45° 60° 90° 120° 135° 150° 180° Rađian π6 π4 π3 π2 2π3 3π4 5π6 π - Nhấn mạnh việc viết theo dạng chứa π và dạng số thập phận. - Cho HS hoạt động nhóm: - HS hoạt động theo nhóm. Chú ý: Khi viết số đo của 1 góc (cung) theo đơn vị rađian, ta thường không viết rad sau số đo. + Phát bảng phụ và ra yêu cầu cho các nhóm. Độ 18° 10° 57°30' 33°45' -25° -360π° -125°45' 135π° Rađian π10 π18 23π72 3π16 5π36 -2 503π720 34 + Gọi các nhóm nêu kết quả của mình. + Gọi các nhóm khác nhận xét. + Tổng kết, đánh giá - CH5: Tương tự công thức ở CH2, tìm công thức tính độ dài cung có số đo α rad? - HS nêu kết quả (gắn bảng phụ lên bảng) - HS nhận xét. - HS5 thực hiện: α rad=α180π°=α.180π° Cung có số đo α rad của đường tròn bán kính R có độ dài: l=πRα.180π180=Rα c. Độ dài của 1 cung tròn l=Rα - Cho HS làm BT 4/SGK/140 vào vở và đọc to kết quả. - GV nhận xét. a. l=20.π15=4π3cm b. l=20.1,5=30cm c. l=π.20.37180=37π9cm Ví dụ: BT4. Đường tròn lượng giác có bán kính 20cm. Tìm độ dài của các cung trên đường tròn có số đo: a. π15 b. 1,5 c. 37° w Hoạt động 4: Tìm hiểu số đo cung và góc lượng giác. - GV nêu lại VD hình 41. - CH1: Xác định số đo của các cung lượng giác AB? - HS1: Số đo cung AB: a. π2 b. π2+2π=5π2 c. π2+2π+2π=9π2 d. -3π2 2. Số đo của 1 cung lượng giác. a. Ví dụ: a. b. c. d. Hình 41 - GV mời HS khác nhận xét. GV kết luận và đưa ra khái niệm. - CH2: Nhận xét về số đo các cung lượng giác có chung điểm đầu, điểm cuối? - GV rút ra kết luận. - HS nhận xét bài làm trên. - HS2: Số đo các cung lượng giác có chung điểm đầu, điểm cuối sai khác nhau 1 bội của 2π. b. Số đo của 1 cung lượng giác: Số đo của 1 cung lượng giác AMA≠Mlà 1 số thực âm (hay dương). Kí hiệu: sđAM sđAM=α+k2π,k∈ZsđAM=n°+k360°,k∈Z c. Ghi nhớ: trong đó: α,n° là số đo của 1 cung lượng giác có điểm đầu A, điểm cuối M. Khi điểm đầu trùng điểm cuối: sđAA=k2π,k∈Z - Yêu cầu HS nhắc lại khái niệm góc lượng giác. - GV nêu định nghĩa. - CH3: HS thảo luận theo nhóm làm VD hình 46/SGK/139. - GV nhận xét và nêu chú ý - HS trả lời. - HS3 lên bảng thực hiện: sđOA,OE= sđOA,OP= 3. Số đo của 1 góc lượng giác. a. Định nghĩa: Số đo góc lượng giác OA,OC là số đo của cung lượng giác AC tương ứng. Kí hiệu: sđOA,OC b. Ví dụ: Tính sđOA,OE,sđOA,OP theo đơn vị độ và rađian c. Chú ý: (SGK/139) cung lượng giác 1-1 góc lượng giác w Hoạt động 5: Biểu diễn cung lượng giác trên đường tròn lượng giác. - GV hướng dẫn HS từng bước cách biểu diễn cung lượng giác trên đường tròn lượng giác. GV thao tác câu a VD SGK/139. - Yêu cầu HS làm câu b, c cả lớp trình bày vào vở. - HS1 thực hiện câu b. 10π3=π3+3.2π Vậy điểm đầu là điểm A, điểm cuối là điểm N thuộc cung nhỏ AB, AN=13AB. - HS2 thực hiện câu c. -5π4=3π4+-1.2π Vậy cung này có điểm đầu là điểm A, điểm cuối là điểm L chính giữa cung nhỏ B'A'. 4. Biểu diễn cung lượng giác trên đường tròn lượng giác. - Chọn A1;0 làm điểm đầu của tất cả các cung lượng giác trên đường trong lượng giác. - Chọn điểm cuối M của cung lượng giác có số đo α trên đường tròn lượng giác, M được xác định bởi hệ thức sđAM=α. Ví dụ: Biểu diễn trên đường tròn lượng giác các cung có số đo lần lượt là: a. -750° b. 10π3 c. -5π4 a. -750°=-45°+-2.360° Vậy cung -750° có điểm đầu là điểm A, điểm cuối là điểm N chính giữa cung nhỏ AB'. IV.4. Củng cố và dặn dò: - Cho HS nhắc lại các kiến thức trọng tâm trong bài. + Khái niệm đường tròn định hướng, đường tròn lượng giác, cung và góc lượng giác. + Đơn vị rađian, mối quan hệ giữa độ và rađian. + Độ dài cung tròn, số đo cung và góc lượng giác. + - Dặn HS học bài và làm các bài tập trong SGK, SBT. - Ôn lại giá trị lượng giác của góc α,0°≤α≤180° (Hình học 10 – Chương II – §1) - Xem trước bài “§2: GIÁ TRỊ LƯỢNG GIÁC CỦA MỘT CUNG”. Rút kinh nghiệm tiết dạy:

File đính kèm:

  • docxChuong VI Bai 1.docx