Giáo án Hình học lớp 8 học kỳ 1 năm học 2009- 2010

I.MỤC TIÊU :

 HS nắm được định nghĩa tứ giác, tứ giác lồi, tổng các góc của tứ giác lồi.

 Biết vẽ, gọi tên các yếu tố, tính số đo các góc của tứ giác.

II.CHUẨN BỊ : GV: bảng phụ: hình 1,4, 5,6 / SGK

 HS : Thước, bút chì, com pa,

III.TIẾN TRÌNH BÀI DẠY :

 Kiểm tra :

 Bài mới :

 

doc50 trang | Chia sẻ: oanh_nt | Lượt xem: 1096 | Lượt tải: 0download
Bạn đang xem trước 20 trang mẫu tài liệu Giáo án Hình học lớp 8 học kỳ 1 năm học 2009- 2010, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Ngày Soạn: 03 / 09 Tiết 01 Chương I: Tứ Giác Bài 1 : TỨ GIÁC I.MỤC TIÊU : @ HS nắm được định nghĩa tứ giác, tứ giác lồi, tổng các góc của tứ giác lồi. @ Biết vẽ, gọi tên các yếu tố, tính số đo các góc của tứ giác. II.CHUẨN BỊ : Ä GV: bảng phụ: hình 1,4, 5,6 / SGK Ä HS : Thước, bút chì, com pa, … III.TIẾN TRÌNH BÀI DẠY : â Kiểm tra : ã Bài mới : Giáo viên Học sinh Trình bày bảng * Tam giác có ba cạnh, còn tứ giác có mấy cạnh? * GV treo bảng phụ hình 1 và giới thiệu định nghĩa trong SGK. * Hình vẽ 2 có phải là tứ giác không ? vì sao? * GV giới thiệu nhiều cách gọi khác nhau của một tứ giác , các đỉnh, cạnh của tứ giác. * Trong hình 1, tứ giác nào luôn nằm trong cùng một nửa mặt phẳng bờ chứa bất kì cạnh nào của tứ giác? à Ta gọi dạng tứ giác như thế là tứ giác gì? * Lưu ý: tứ giác hình 1b là tứ giác lõm. à Từ đây về sau khi nói đến tứ giác mà không nói gì thêm thì ta hiểu nó là tứ giác lồi. * Tứ giác có bốn cạnh. * HS xem hình 1 để nhận biết các dạng hình tứ giác. * Hình 2 không phải là tứ giác vì 2 đoạn thẳng BC và CD cùng nằm trên cùng một đường thẳng. * HS xem SGK phần này. * Hình a. * Tứ giác ở hình 1a gọi là tứ giác lồi 1) Định nghĩa tứ giác: Tứ giác ABCD là hình gồm bốn đoạn thẳng AB, BC, CD, DA, trong đó bất kì hai đoạn thảng nào cũng không cùng nằm trên một đường thẳng. * Tứ giác ABCD còn đgl BCDA, ADCB, …, các điểm A,B,C,D là các đỉnh; các đoạn thẳng AB, BC, CD, DA là các cạnh * Định nghĩa tứ giác lồi: Tứ giác lồi là tứ giác luôn nằm trong một nửa mặt phẳng có bờ là đường thẳng chứa bất kì cạnh nào của tứ giác * GV nêu câu hỏi và gọi từng HS lần lượt đứng tại chỗ trả lời. * Bài tập ?2 / SGK a) Hai đỉnh kề nhau: A và B , B và C, C và D, D và A Hai đỉnh đối nhau: A và C , B và D b) Đường chéo: AC, BD (hình 3) Giáo viên Học sinh Trình bày bảng * Bài tập ?2 / SGK (tiếp) c) Hai cạnh kề: AB và BC, BC và CD, CD và DA, DA và AB Hai canh đối: AB và CD, BD và DA d) Góc: Â, BÂ, CÂ, D e) Điểm nằm trong tứ giác: M và P Điểm nằm ngoài tứ giác: N và Q. * Tổng 3 góc của một tam giác bằng bao nhiêu? * GV gọi 1 HS lên làm câu b * Tổng 3 góc của tam giác bằng 1800. còn tổng 4 góc của tứ giác bằng bao nhiêu độ? * Bài tập ?3 / SGK a) Tổng 3 góc của một tam giác bằng 1800. b) 1 HS * Tổng 4 góc của tứ giác bằng 3600. 2) Tổng các góc của một tứ giác: Tổng các góc của một tứ giác bằng 3600.  + B + C + D = 3600 ƒ Củng cố : Ä bài tập 1, 2 / SGK „ Lời dặn : ð Về nhà xem lại bà vừa học để nắm: Định nghĩa tứ giác, tứ giác lồi. Tổng bốn góc của tứ giác bằng bao nhiêu độ? ð Xem lại bài tập 2 để nắm chắc kn về góc ngoài của tứ giác. ð BTVN: 3, 4, 5 / SGK. Ngày Soạn: 03 / 09 Tiết 02 Bài 2 : Hình Thang I.MỤC TIÊU : @ HS nắm được định nghĩa hình thang, hình vuông, các yếu tố của hình thang. Biết chứng minh tứ giác đã cho là hình thang, hình thang vuông. @ HS biết vẽ hình thang, hình thang vuông, biết tính số đo các góc của hình thang, hình thang vuông. II.CHUẨN BỊ : Ä GV: bảng phụ: hình 14, 15, 16, 17, 20,21 / SGK Ä HS : Thước , bút chì, compa, Làm các bt đã dặn tiết trước III.TIẾN TRÌNH BÀI DẠY : â Kiểm tra : 1)- Tứ giác như thế nào gọi là tứ giác lồi? - Tổng bốn góc của một tứ giác bằng bao nhêu độ? - Bài tập: 3 / SGK ã Bài mới : Giáo viên Học sinh Trình bày bảng * Hãy kiểm tra kỹ hình 13: 2 cạnh AB vàCD có song song với nhau hay không ? * Dò trong SGK xem coi tứ giác có hai canh song song gọi là hình gì? à GV giới thiệu hình thang: cạnh bên, đường cao, đáy lớn đáy nhỏ. * AB // CD vì có cặp góc trong cùng phía bù nhau. * Tứ giác có hai cạnh song song gọi là hình thang. * Bài tập ?1 / SGK * Bài tập ?2 / SGK 1) Định nghĩa: Hình thang là tứ giác có hai cạnh đáy song song. * Từ bài tập ?1, ?2 ta rút ra được nhận xét gì? * HS trả lời phần nhận xét / SGK. * Nhận xét: (HS không ghi) + Nếu một hình thang có hai cạnh bên song song thì hai cạnh bên bằng nhau và hai cạnh đáy bằng nhau. + Nếu một hình thang ó hai cạnh đáy bằng nhau thì hai cạnh bên song song. * Nếu hình thang có thêm một góc vuông (hình 18 chẳng hạn) thì ta gọi nó là hình gì? * Hình thang có thêm một góc vuông là hình thang vuông. 2) Hình thang vuông: Định nghĩa: Hình thang có một góc vuông là hình thang vuông. ƒ Củng cố : Ä Bài tập 6, 7, 8 /SGK „ Lời dặn : ð Học thuộc lòng định nghĩa hình thang, hình thang vuông. ð BTVN : 8, 9 / SGK. Tiết 03 Ngày Soạn: 10 / 09 Bài 3: Hình Thang Cân I.MỤC TIÊU : @ HS nắm được định nghĩa, các tính chất, các dấu hiệu nhận biết hình thang cân. @ HS biết vẽ hình thang cân, biết áp dụng các định nghĩa, tính chất vừa học để tính toán, chứng minh một tứ giác là hình thang cân. II.CHUẨN BỊ : Ä GV: bảng phụ hình 24, dấu hiệu nhận biết hình thang cân, Ä HS : Xem trước bài học này ở nhà. III.TIẾN TRÌNH BÀI DẠY : â Kiểm tra : 1)- Tứ giác như thế nào gọi là hình thang ? hình thang vuông? - Bài tập 10 / 71 SGK. ã Bài mới : Giáo viên Học sinh Trình bày bảng * Hình thang ở hình 23 có gì đặc biệt? Hai góc kề 1 đáy ntn? * Hãy xem sách và cho biết: hình thang có 2 góc kề 1 đáy bằng nhau gọi là hình gì? * GV treo bảng phụ hình 24 * Bài tập ?1 / SGK Hai góc kề đáy CD bằng nhau. * Hình thang có hai góc kề một đáy bằng nhau gọi là hình thang cân. * Bài tập ?2 / SGK 1) Định nghĩa: Hình thang cân là hình thang có hai góc kề một đáy bằng nhau. * Nếu gọi O là giao điểm của 2 tia DA vàCB, khi ấy ∆ ODA là ∆ gì? à từ đó => điều gì? * Xét xem ∆ OAB có phải là ∆ cân hay không? à Từ đó suy ra điều gì? * Do OC = OD và OB = OA nên OC – OB có bằng với hiệu OD – OA không ? *VẬY: trong hình thang cân, hai cạnh bên như thế nào? (GV yêu cầu HS về nhà xem phần chứng minh / SGK) * Chú ý HS : Có những hình thang có 2 cạnh bên bằng nahu nhưng không phải là hình thang cân. * ∆ ODA cân ở O do C = D => OC = OD * ∆ OAB cân ở O => OB = OA * OC – OB = OD – OA * Trong hình thang cân hai cạnh bên bằng nhau. * HS xem hình 27 /SGK 2) Tính chất: a) Định lí 1: Trong hình thang cân hai cạnh bên bằng nhau. Gọi O là giao điểm của DA và CB. Vì C = D (do ABCD là hình thang cân) nên ∆ ODC cân ở O => OC = OD (1) Mặt khác AB //CD (gt) nên : => ∆ OAB cân ở O => OA = OB (2) Từ (1) và (2) => OC – OB = OD – OA hay AD = BC (đpcm) Giáo viên Học sinh Trình bày bảng * GV giới thiệu: Trong hình thang cân, hai đường chéo cũng bằng nhau. * GV hướng dẫn HS cách chững minh định lí 2: cm 2 ∆ ADC và BCD bằng nhau từ đó => điều cần chững minh. * HS xem định lí2 / SGK * HS về nhà tập chững minh lại định lí2 b) Định lí 2: Trong hình thang cân, hai đường chéo bằng nhau Hướng dẫn: ∆ ADC = ∆ BCD (cgc) => AC = BD (đpcm) * Từ kết quả đo được ở bt ?3 ta suy ra được điều gì? * Có mấy cách để chứng minh hình thang đã cho là hình thang cân? * Bài tập ?3 / SGK * Hình thang có hai đường chéo bằng nhau là hình thang cân. * Có 2 cách: (dấu hiệu / SGK) 3) Dấu hiệu nhận biết: a) định lí 3: Hình thang có hai đường chéo bằng nhau là hình thang cân. b) Dấu hiệu nhận biết hình thang cân: 1. Hình thang có hai góc kề một đáy bằng nhau là hình thang cân. 2. Hình thang có hai đường chéo bằng nhau là hình thang cân. ƒ Củng cố : Ä Nhắc lại định nghĩa hình thang cân, các định lí 1, 2, 3 Ä Hình thang đã cho có thêm điều kiện gì thì trở thành hình thang cân ? Ä Bài tập 13 / SFK. „ Lời dặn : ð Học thuộc lòng các định nghĩa và các định lí hình thang cân. ð Học thuộc kỹ dấu hiệu nhận biết hình thang cân. ð BTVN: 11, 12, 15, 16, 17 / SGK. ð Xem lại định lí Pytago đã học ở lớp 7. Ngày Soạn: 11 / 09 Tiết 04 Luyện Tập I.MỤC TIÊU : @ Củng cố các định nghiã, định lí 1,2,3 của hình thang cân và các dấu hiệu nhận biết hình thang cân. @ Củng cố các trường hợp bằng nhau của hai ∆ và định lí pytago. II.CHUẨN BỊ : Ä GV: Đề bài tập 15, 16, 17 / SGK. Ä HS : Làm các bt đã dặn tiết trước. III.TIẾN TRÌNH BÀI DẠY : â Kiểm tra : 1)- Phát biểu định nghĩa hình thang cân? Định lí 1,2 về hình thang cân? - Bài tập 11 / 74 SGK 2)- Phát biểu đn, định lí 1,2 về hình thang cân? - Bài tập 12 / 74 SGk. ã Bài mới : Giáo viên Học sinh * Trước tiên ta phải cm BDEC là hình thang ß DE // BC ß 2 cạnh DE và BC cùng cắt đường thẳng thứ ba tạo ra cặp góc đồng vị bằng nhau. * Tổng ba góc trong một ∆ bằng bao nhiêu độ? * Từ điều trên hãy tính các góc DÂ1 và Ê1. à DÂ1 và Ê1 có bằng nhau không? * Bài tập 15 / SGK * Tổng ba góc trong một ∆ bằng 1800. * 1 HS a) Xét ∆ cân ADE ta có: DÂ1 + Ê1 +  = 1800 hay 2.DÂ1 = 1800 –  => DÂ1 = (1800 – Â) : 2 (1) Xét ∆ cân ABC ta cũng có B = (1800 – Â) : 2 (2) Từ (1) & (2) => DÂ1 = B => DE // BC => BDEC là hình thang (I) Mặt khác: B = C (gt) (II) Nên từ (I) và (II) => BDEC là hình thang cân b)  = 500 => B = C = 650 => DÂ2 = Ê2 = 1150 * Ta có thể dựa vàdo kết quả của bài tập 15a để chứng minh. * Bài này cm BECD là hình thang có hai đường chéo bằng nhau. * cm thêm ∆ EBD cân ở E => ED = EB --> đpcm * Bài tập 16 / SGK ∆ ABD = ∆ ACE (gcg) => AD = AE => DE // BC (theo bt 15a) => BEDC là hình thang (1) ∆ ABD = ∆ ACE => BD = EC (2) (1) & (2) => BEDC là hình thang cân. => ∆ EBD cân ở E => EB = ED Vây BEDC là hình thang cân có đáy nhỏ bằng cạnh bên. Giáo viên Học sinh * Áp dụng dấu hiệu nhận biết thứ hai để chứng minh. * Bài tập 17/ SGK Gọi I là giao điểm của AC và BD Khi đó ta có : ∆ IAB cân ở I => IA = IB (1) ∆ IDC cân ở I => ID = IC (2) Từ (2) & (2) suy ra: IA + IC = IB + ID hay AC = BD Hình thang ABCD có AC = BD => ABCD là hình thang cân. ƒ Củng cố : „ Lời dặn : ð Xem lại các định nghĩa, định lí về hình thang, hình thàng cân. ð Bài tập 18 / 75 SGK. ð Xem nội dung bài học kế tiếp. Ngày Soạn: 15 / 09 Tiết 05 Bài 4 : Đường Trung Bình Của Tam Giác, Của Hình Thang 1- ĐƯỜNG TRUNG BÌNH CỦA TAM GIÁC I.MỤC TIÊU : @ HS nắm được định nghĩa, các định lí về đường trung bính của tam giác. @ HS hiểu có thể ddo khoảng cách giữa hai điểm trên thực tế (không đo trực tiếp được) bằng cách áp dụng định lí 2. II.CHUẨN BỊ : Ä GV: bảng phụ: định lí 1, định nghĩa, định lí 2 của đường trung bình. Ä HS : thước thẳng, thước đo góc. III.TIẾN TRÌNH BÀI DẠY : â Kiểm tra : 1)- Thế nào gọi là hình thang, hình thang cân ? - BT: Cho ∆ ABC, gọi D là trung điểm của cạnh AB, qua D kẻ DE // BC (E AC). Hỏi : tứ giác ABCD là hình gì? ã Bài mới : Giáo viên Học sinh Trình bày bảng * Từ bài tập ở trên: * Nếu từ E kẻ EF // AB (F BC) thì ∆ ADE = ∆ EFC ? à hãy cm ∆ ADE = ∆ EFC. * ∆ ADE = ∆ EFC => điều gì ? * Qua bài toán chứng minh trên ta suy ra được điều gì? * ∆ ADE = ∆ EFC. Xét 2 ∆ ADE và EFC có: DÂE = FÊC (do EF // AB) AD = EF ( cùng bằng BD) ADÂE = EFÂC (cùng bằng BÂ) Suyra:∆ ADE = ∆ EFC(gcg) * ∆ ADE = ∆ EFC => AE = EC , tức là E là trung điểm của cạnh AC. * Đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm cạnh thứ ba. 1) Đường trung bình của tam giác: a) Định lí 1: Đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm cạnh thứ ba. GT ∆ ABC , AD = DB DE // BC KL AE = EC Chứng minh Kẻ EF // AB (E BC) => EF = BD ( BD // EF là hai cạnh bên hình thang DEFB) * DÂE = FÊC (do EF // AB, đồng vị) * ADÂE = DBÂC (đồng vị và DE // BC) DBÂC = EFÂC (đồng vị và EF // AB) Suy ra: ADÂE = EFÂC Xét ∆ ADE và ∆ EFC có : ADÂE = DBÂC, EF = BD và DBÂC = EFÂC Nên suy ra: ∆ ADE = ∆ EFC (gcg) Từ đó suy ra : AE = EC (đpcm) * Đoạn thẳng nối trung điểm hai cạnh của tam giác gọi là đường gì của tam giác? * HS nghiên cứu SGK trả lời. b) Định nghĩa : Đoạn thẳng nối trung điểm hai cạnh của tam giác gọi là đường trung bình của tam giác. Giáo viên Học sinh Trình bày bảng * Đường trung bình của tam có song song với thứ ba không? * Xét xem đường trung bình có độ dài bằng bao nhiêu cạnh thứ ba. * GV hướng dẫn HS chứng minh định lí 2. * Đường trung bìnhcủa tam giác song song với cạnh thứ ba. * Đường trung bình bằng nửa cạnh thứ ba. * HS về nhà xem thêm phần chứng minh định lí 2 theo cách khác ( như SGK). * Bài tập ?3 / SGK c) Định lí 2: Đường trung bình của tam giác song song với cạnh thứ ba và bằng nửa cạnh ấy. GT ∆ ABC, Đường trung bình DE KL DE // BC DE = Chứng minh: * Giả sử đường thẳng a qua trung điểm D và song song với BC, theo định lí 1 thì a qua trung điểm E của cạnh AC => DE nằm trên đường thẳng a => DE // BC * Gọi F là trung điểm cạnh BC, khi ấy ta có EF // AB. * Hình thang BDEF có 2 cạnh bên BD // EF => DE = BF. mà BF = (do F là trung điểm của BC) nên suy ra: DE = ƒ Củng cố : Ä Thế nào gọi là đường trung bình của tam giác? Ä Phát biểu định lí thứ nhất về đường trung bình của tam giác? Ä Phát biểu định lí thứ hai về đường trung bình của tam giác? Ä BT 20, 21 / 79 SGK. Ä Một tam giác có thể có bao nhiêu đường trung bình? „ Lời dặn : ð Học thuộc lòng các định lí 1, 2 đường trung bình của tam giác. ð BTVN : 22 / SGK. ð Xem trước mục 2 – Đường trung của hình thang. Ngày Soạn: 16 / 09 Bài 4 : Đường Trung Bình Của Tam Giác, Của Hình Thang Tiết 06 2- ĐƯỜNG TRUNG BÌNH CỦA HÌNH THANG I.MỤC TIÊU : @ HS nắm vững định lí 3, 4 về đường trung bình của hình thang. @ HS hiểu được cách chứng minh định lí 3, 4. II.CHUẨN BỊ : Ä GV: Bảng phụ định lí 3, 4. Ä HS : Làm các bt đã dặn tiết trước. Thước thẳng, thước đo góc. III.TIẾN TRÌNH BÀI DẠY : â Kiểm tra : 1)- Phát biểu định lí 1 về đường trung bình của tam giác, định nghĩa, định lí 2 về đường trung bình của tam giác? - Bài tập 22 / SGK. ã Bài mới : Giáo viên Học sinh Trình bày bảng * Trong hình thang, nếu có đường thẳng đi qua trung điểm một cạnh bên và song song với hai đáy thì đường thẳng đó đi qua trung điểm của cạnh bên thứ hai không ? * GV gọi 1 HS lên bảng vẽ hình thang và ghi GT, KL. * Gọi I là giao điểm của EF và AC. à Có nhận xét gì về điểm I trên cạnh AC ? * Đường thẳng đi qua trung điểm một cạnh bên và song song với hai đáy thì đi qua trung điểm cạnh thứ bên hai. * I là trungđiểm của cạnh AC. 2) Đường trung bình của hình thang: a) Định lí 3: Đường thẳng đi qua trung điểm một cạnh bên và song song với hai đáy thì đi qua trung điểm cạnh thứ bên hai. GT Hình thang ABCD EA = ED EF // AB // CD KL FB = FC Chứng minh Gọi I là giao điểm của EF và AC. Xét ∆ ADC, đường thẳng qua E và // với DC nên suy ra I là trung điểm của AC. Xét ∆ ABC, có IA = IC và IF // AB nên suy ra F là trung điểm của cạnh BC. Hay FB = FC (đpcm) * Đoạn thẳng nối trung điểm hai cạnh bên của hình thang gọi là đường gì? * Đoạn thẳng nối trung điểm hai cạnh bên của hình thang gọi là đường trung bình của hình thang. b) Định nghĩa: Đường trung bình của hình thang là đoạn thẳng nối trung điểm hai cạnh bên của hình thang. Giáo viên Học sinh Trình bày bảng * GV hướng dẫn HS chứng minh tiếp phần chứng minh định lí 3, từ đó suy ra định lí 4. * Hãy suy nghĩ xem : Đường trung bình của hình thang có song song với hai đáy hay không ? Và có độ dài của nó liện quan ntn so vơi tổng độ dài 2 canh đáy? à GV hướng dẫn lại tuần tự các bước chứng minh định lí 4 * HS có thể tra SGK trả lời: Đường trung bình của hình thang song song với hai đáy và bằng nửa tổng hai đáy. * Bài tập ?5 / SGK c) Định lí 4: Đường trung bình của hình thang song song với hai đáy và bằng nửa tổng hai đáy. GT Hình thang ABCD EA = ED FB = FC KL EF // AB // DC EF = Chứng minh Gọi I là giao điểm của AC và EF. * Xét ∆ ADC ta được EI là đường trung bình => EI // = (1) * Xét ∆ ABC ta được FI là đường trung bình => FI // = (2) Từ (1) và (2) suy ra : EF = EI + EF = Và EF // AB // CD (đpcm) ƒ Củng cố : Ä BT 23, 24 / SGK. Ä Nhắc lại các định nghĩa , định lí đã học ở bài 4. „ Lời dặn : ð Học thuộc lòng các đinh lí 3, 4 , định nghĩa hình thang. ð BTVN : 25, 26, 27, 28 / SGK. Ngày Soạn: 26 / 09 Tiết 07 Luyện Tập I.MỤC TIÊU : @ Củng cố các định nghãi, định lí về đường trung bình của tam giác, đường trung bình của hình thang. @ HS chứng minh được một số bài tập đơn giản có liên quan. II.CHUẨN BỊ : Ä GV: Vẽ các hình có đờng trung bình của ∆ , của hình thang. Ä HS : Làm các bt đã dặn tiết trước III.TIẾN TRÌNH BÀI DẠY : â Kiểm tra : 1)- Phát biểu đinh nghãi đường trung bình của hình thang? Định lí 4 về đường trung bình của hình thang ? - Bài tập 26 / SGK. ã Luyện tập : Giáo viên Học sinh * Gv vẽ sẳn hình, yêu cầu HS lên ghi GT, KL. a) * Với gt đã cho thì EK có phải là đường trung bình của ∆ ADC ? Từ đó suy ra điều gì ? * KF có phải là đường trung bình của ∆ ABC ? Từ đó suy ra điều gì ? b) Xét ∆ EKF ta có điều gì ? à áp dụng định lí 4 c/m tiếp. * Bài tập 27 / SGK * EK là đường trung bình của ∆ ADC vì E, K là các trung điểm => * KF có phải là đường trung bình của ∆ ABC. => * EF EK + KF GT tứ giác ABCD AE = AD, BF = FC AK = KC. KL a) so sánh EK và CD So sánh KF và AB b) Chứng minh: a) EK là đường trung bình của ∆ ADC => KF là đường trung bình của ∆ ABC => b) Ta có : EF EK + KF (1) mà (2) Từ (1) và (2) suy ra : (đpcm) * Gv gọi HS lên vẽ hình , ghi GT, KL. * Bài tập 28 / SGK * 1 HS lên vẽ hình , ghi GT, KL. GT hình thang ABCD (AB // CD) AE = ED, BF = FC AB = 6cm, CD = 10cm KL a) AK = KC, BI = ID b) Tính EI, KF, IK. Giáo viên Học sinh a) EF có phải là đường trunh bình của hình thang ABCD hay không? + Xét tiếp các ∆ ADC, BDC => điều chứng minh b) GV gợi ý HS áp dụng định lí 2, định lí 4 về đường trunh vbình của ∆ , của hình thang để chứng minh. * Bài tập 28 / SGK (tiếp) + EF là đường trung bình của hình thang ABCD vì E, F là các trung điểm cạnh bên. + HS áp dụng định lí 1 về đường trunh bình của ∆ để chứng minh. * 1 HS lên bảng làm. Chứng minh: a) Ta có EF là đường trung bình của hình thang ABCD => EF // AB // CD . * Xét ∆ ADC có: AE = ED và EK // CD => AK = KC * Xét ∆ BDC có: BF = FC và FI // CD => BI = ID b) EI là đường trung bình của ∆ ABD => FK là đường trung bình của ∆ ABC => EF là đường trung bình của hình thang ABCD => => IK = EF – (EI + FK) = 8cm – 6cm = 2cm * GV hướng dẫn nhanh cách giải bài tập 25. * Bài tập 25 / SGK + HS về nhà trình bày lại cách giải và tìm cách giải khác của bài tập 25 Theo giảthiết ta có : EK là đường trung bình của ∆ ABD => EK // AB (1) EF là đường trung bình của hình thang ACBD => EF // AB // CD (2) Từ (1) và (2) => EF và EK cùng đi qua một trung điểm E và song song với AB, theo tiên đề ơclic suy ra EK và EF trùng nhau. Vậy, E , K, F thẳng hàng. ƒ Lời dặn : ð Tìm cách chứng minh khác của bài tập 25 / SGK. ð Xem lại các định lí , định nghãi về đường trung bình của tam giác, của hình thang đã học. ð Tiết sau mang theo đầy đủ com pa và thước thẳng. Ngày Soạn: 27 / 09 Tiết 08 bài 5: Dựng Hình Bằng Thước và Compa. DỰNG HÌNH THANG I.MỤC TIÊU : @ HS biết dùng thước và compa để dựng hình thang theo các yếu tố đã cho. Biết trình bày hai phần : cách dựng và chứng minh. II.CHUẨN BỊ : Ä GV +HS : Thước thẳng + compa. III.TIẾN TRÌNH BÀI DẠY : â Kiểm tra : 1)- Phát biểu định nghĩa hình thang, hình thang cân, hình thang vuông ? - Bài tập : Vẽ hình thang ABCD có đáy nhỏ AB và đáy lớn CD. ã Bài mới : Giáo viên Học sinh Trình bày bảng * Gv nêu lại bài toán dựng hình đã học ở lớp 7 bằng thước thẳng và compa. * GV biểu diễn dựng lại các hình cơ bản: đoạn thẳng, dựng góc bằng góc cho trước, dựng đường trung trực đoạn thẳng, dựng trung điểm, dựng tia phân giác; qua 1 điêm nằm ngoài đường thẳng cho trước dựng đường thẳng // (hoặc vuông góc ) với đường thẳng đã cho ; dựng tam giác. * HS xem SGK để nhớ lại các bài toán dựng hình cơ bản đã học ở lớp 7. * HS chú ý theo dỏi. 1) Bài toán dựng hình ; 2) Các bài toán dựng hình : (2 phần này HS đọc SGK) a) + Trước tiên ta giả sử là hình đã dựng được rồi thoả mãn yêu cầu bài toán. Đồng thời vẽ nháp hình thang đó ra giấy. + Bộ phận nào có thể dựng được ngay ? + Vậy, hình thang ABCD đã có AD = 2cm, D = 700 và CD = 4cm. Còn lại phải dựng đáy AB = 3cm à Điểm B phải thoả mãn điều kiện gì? * 1 vài HS đọc đề bài toán. + HS thực hiện vẽ nháp hình thang ABCD có các yếu tố bài toán yêu cầu. + ∆ ADC dựng được ngay vì biết độ dài 2 cạnh và góc xen giữa. + B thuộc đường thẳng đi qua A và // với CD. + B cách A một khoảng 3cm. 3) Dựng hình thang : Ví dụ : Dựng hình thnag ABCD biết đáy AB = 3cm, đáy CD = 4cm , cạnh bên AD= 3cm , D = 700 . Giải: a) Phân tích: Giả sử đã dựng được hình thang thoả mãn yêu cầu đề bài. - ∆ ADC dựng ddwowjc vì biết 2 cạnh và góc xen giữa. - Do ABCD là hình thang nên điểm B phải thoả mãn hai điều kiện : + B thuộc đường thẳng đi qua A và // với CD. + B cách A một khoảng 3cm. Giáo viên Học sinh Trình bày bảng b) + Dựa vào các bước phân tích trên, hãy tiến hành dựng hình theo tuần tự. c) Bằng lập luận hãy chững tỏ rằng hình vừa dựng được có đủ các yếu tố của đề bài đưa ra. + Theo cách dựng, tứ giác ABCD là hình gì? Có đủ các yếu tố của bài toán yêu cầu không ? d) Biện luận : Xét xem khi nào thì bài toán dựng được, và dựng được mấy hình thoả mãn yêu cầu bài toán. + HS thực hiện dựng hình. * HS thực hiện theo hướng dẫn của GV. + Theo cách dựng, tứ giác ABCD là hình thang có đủ các yếu tố bài toán yêu cầu. d) HS nhận xét : Ta dựng được bao nhiêu hình thang như thế. b) Cách dựng : - Dựng ∆ ADC có AD = 2cm, D = 700 và DC = 4cm. - Dựng tia Ax // CD (tia Ax và điểm C cùng nằm trong một nửa mặt phẳng bờ AD). - Dựng B Ax sao cho AB = 3cm. - Kẻ BC. c) Chứng minh : Theo cách dựng, tứ giác ABCD là hình thang vì AB // CD. Hình thang có AB = 2cm, CD = 4cm, AD = 2cm, D = 700 nên thoả mãn yêu cầu đề bài. d) Biện luận : Ta dựng được một hình thang thoả mãn yêu cầu bài toán. ƒ Củng cố : Ä BT 28 / SGK. Ä BT 31 / SGK. „ Lời dặn : ð Xem thật kỹ bài toán dựng hình trong SGK. ð BTVN : 30, 32, 33, 34 / SGK. Tiết 09 Ngày Soạn: 03/10 I.MỤC TIÊU : @ Củng cố cách dựng hình bằng thước và compa. @ HS dựng được hình thang bằng thước và compa. @ Yêu cầu chủ yếu HS dựng được tia phân giác của góc, dựng đường tru

File đính kèm:

  • docGA Hinh hoc8 HKI.doc