1. THỂ TÍCH KHỐI LĂNG TRỤ:
V= B.h
với
a) Thể tích khối hộp chữ nhật:
V = a.b.c
với a,b,c là ba kích thước
b) Thể tích khối lập phương:
V = a3
với a là độ dài cạnh
20 trang |
Chia sẻ: lephuong6688 | Lượt xem: 1094 | Lượt tải: 5
Bạn đang xem nội dung tài liệu Phương pháp luyện tập Hình học không gian 12, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
THỂ TÍCH KHỐI ĐA DIỆN
ÔN TẬP KIẾN THỨC CƠ BẢN HÌNH HỌC LỚP 12
THỂ TÍCH KHỐI ĐA DIỆN
I/ Các công thức thể tích của khối đa diện:
1. THỂ TÍCH KHỐI LĂNG TRỤ:
V= B.h
với
Thể tích khối hộp chữ nhật:
V = a.b.c
với a,b,c là ba kích thước
Thể tích khối lập phương:
V = a3
với a là độ dài cạnh
2. THỂ TÍCH KHỐI CHÓP:
V=Bh
với
3. TỈ SỐ THỂ TÍCH TỨ DIỆN:
Cho khối tứ diện SABC và A’, B’, C’ là các điểm tùy ý lần lượt thuộc SA, SB, SC ta có:
4. THỂ TÍCH KHỐI CHÓP CỤT:
với
II/ Bài tập:
LOẠI 1: THỂ TÍCH LĂNG TRỤ
Dạng 1: Khối lăng trụ đứng có chiều cao hay cạnh đáy
Ví dụ 1: Đáy của lăng trụ đứng tam giác ABC.A’B’C’ là tam giác ABC vuông cân tại A có cạnh BC = a và biết A'B = 3a. Tính thể tích khối lăng trụ.
Lời giải:
Ta có
vuông cân tại A nên AB = AC = a
ABC A'B'C' là lăng trụ đứng
Vậy V = B.h = SABC .AA' =
Ví dụ 2: Cho lăng trụ tứ giác đều ABCD.A’B’C’D' có cạnh bên bằng 4a và đường chéo 5a. Tính thể tích khối lăng trụ này.
Lời giải:
ABCD A'B'C'D' là lăng trụ đứng nên
BD2 = BD'2 - DD'2 = 9a2
ABCD là hình vuông
Suy ra B = SABCD =
Vậy V = B.h = SABCD.AA' = 9a3
Ví dụ 3: Đáy của lăng trụ đứng tam giác ABC.A’B’C’ là tam giác đều cạnh
a = 4 và biết diện tích tam giác A’BC bằng 8. Tính thể tích khối lăng trụ.
Lời giải:
Gọi I là trung điểm BC .Ta có
ABC đều nên
.
Vậy : VABC.A’B’C’ = SABC .AA'=
Ví dụ 4: Một tấm bìa hình vuông có cạnh 44 cm, người ta cắt bỏ đi ở mỗi góc
tấm bìa một hình vuông cạnh 12 cm rồi gấp lại thành một cái hộp chữ nhật
không có nắp. Tính thể tích cái hộp này.
Giải
Theo đề bài, ta có
AA' = BB' = CC' = DD' = 12 cm nên ABCD là hình vuông có
AB = 44 cm - 24 cm = 20 cm
và chiều cao hộp h = 12 cm
Vậy thể tích hộp là
V = SABCD.h = 4800cm3
Ví dụ 5: Cho hình hộp đứng có đáy là hình thoi cạnh a và có góc nhọn bằng
600 Đường chéo lớn của đáy bằng đường chéo nhỏ của lăng trụ.
Tính thể tích hình hộp .
Lời giải:
Ta có tam giác ABD đều nên : BD = a
và SABCD = 2SABD =
Theo đề bài BD' = AC =
Vậy V = SABCD.DD' =
2)Dạng 2: Lăng trụ đứng có góc giữa đường thẳng và mặt phẳng.
Ví dụ 1: Cho lăng trụ đứng tam giác ABC A'B'C' có đáy ABC là tam giác
vuông cân tại B với BA = BC = a ,biết A'B hợp với đáy ABC một góc 600 .
Tính thể tích lăng trụ.
Lời giải:
Ta có là hình chiếu của A'B trên đáy ABC .
Vậy
SABC =
Vậy V = SABC.AA' =
Ví dụ 2: Cho lăng trụ đứng tam giác ABC A'B'C' có đáy ABC là tam giác
vuông tại A với AC = a , = 60 o biết BC' hợp với (AA'C'C) một góc 300.
Tính AC' và thể tích lăng trụ.
Lời giải: .
Ta có:
nên AC' là hình chiếu của BC' trên (AA'C'C).
Vậy góc[BC';(AA"C"C)] = = 30o
V =B.h = SABC.AA'
là nửa tam giác đều nên
Vậy V =
Ví dụ 3: Cho lăng trụ đứng ABCD A'B'C'D' có đáy ABCD là hình vuông cạnh a
và đường chéo BD' của lăng trụ hợp với đáy ABCD một góc 300.
Tính thể tích và tổng diên tích của các mặt bên của lăng trụ .
Giải:
Ta có ABCD A'B'C'D' là lăng trụ đứng nên ta có: và BD là hình chiếu của BD' trên ABCD .
Vậy góc [BD';(ABCD)] =
Vậy V = SABCD.DD' = S = 4SADD'A' =
Ví dụ 4: Cho hình hộp đứng ABCD A'B'C'D' có đáy ABCD là hình thoi cạnh
a và = 60o biết AB' hợp với đáy (ABCD) một góc 30o .
Tính thể tích của hình hộp.
Giải
đều cạnh a
vuông tạiB
Vậy
3) Dạng 3: Lăng trụ đứng có góc giữa 2 mặt phẳng
Ví dụ 1: Cho lăng trụ đứng tam giác ABC A'B'C' có đáy ABC là tam giác
vuông cân tại B với BA = BC = a ,biết (A'BC) hợp với đáy (ABC) một góc
600 .Tính thể tích lăng trụ.
Lời giải:
Ta có
Vậy
SABC =
Vậy V = SABC.AA' =
Ví dụ 2: Đáy của lăng trụ đứng tam giác ABC.A’B’C’ là tam giác đều . Mặt
(A’BC) tạo với đáy một góc 300 và diện tích tam giác A’BC bằng 8.
Tính thể tích khối lăng trụ.
Giải: đều mà AA' nên A'I(đl 3).
Vậy góc[(A'BC);)ABC)] = = 30o
Giả sử BI = x .Ta có
A’A = AI.tan 300 =
Vậy VABC.A’B’C’ = CI.AI.A’A = x3
Mà SA’BC = BI.A’I = x.2x = 8
Do đó VABC.A’B’C’ = 8
Ví dụ 3: Cho lăng trụ tứ giác đều ABCD A'B'C'D' có cạnh đáy a và mặt phẳng
(BDC') hợp với đáy (ABCD) một góc 60o.Tính thể tích khối hộp chữ nhật.
Gọi O là tâm của ABCD . Ta có
ABCD là hình vuông nên
CC'(ABCD) nên OC'BD (đl 3). Vậy góc[(BDC');(ABCD)] = = 60o
Ta có V = B.h = SABCD.CC'
ABCD là hình vuông nên SABCD = a2
vuông nên CC' = OC.tan60o =
Vậy V =
Ví dụ 4: Cho hình hộp chữ nhật ABCD A'B'C'D' có AA' = 2a ; mặt phẳng
(A'BC) hợp với đáy (ABCD) một góc 60o và A'C hợp với đáy (ABCD) một
góc 30o .Tính thể tích khối hộp chữ nhật.
Ta có AA' AC là hình chiếu của A'C trên (ABCD) .
Vậy góc[A'C,(ABCD)] =
BC AB BC A'B (đl 3) .
Vậy góc[(A'BC),(ABCD)] =
AC = AA'.cot30o =
AB = AA'.cot60o =
Vậy V = AB.BC.AA' =
4) Dạng 4: Khối lăng trụ xiên
Ví dụ 1: Cho lăng trụ xiên tam giác ABC A'B'C' có đáy ABC là tam giác
đều cạnh a , biết cạnh bên là và hợp với đáy ABC một góc 60o .
Tính thể tích lăng trụ.
Lời giải:
Ta có là hình chiếu của CC' trên (ABC)
Vậy
SABC = .Vậy V = SABC.C'H =
Ví dụ 2: Cho lăng trụ xiên tam giác ABC A'B'C' có đáy ABC là tam giác
đều cạnh a . Hình chiếu của A' xuống (ABC) là tâm O đường tròn ngoại tiếp
tam giác ABC biết AA' hợp với đáy ABC một góc 60 .
1) Chứng minh rằng BB'C'C là hình chữ nhật.
2) Tính thể tích lăng trụ .
Lời giải:
1) Ta có là hình chiếu của AA' trên (ABC)
Vậy
Ta có BB'CC' là hình bình hành ( vì mặt bên của lăng trụ)
tại trung điểm H của BC nên (đl 3 )
mà AA'//BB' nên .Vậy BB'CC' là hình chữ nhật.
2) đều nên
Vậy V = SABC.A'O =
Ví dụ 3: Cho hình hộp ABCD.A’B’C’D’ có đáy là hình chữ nhật với
AB = AD =.Hai mặt bên (ABB’A’) và (ADD’A’) lần lượt tạo với đáy
những góc 450 và 600. . Tính thể tích khối hộp nếu biết cạnh bên bằng 1.
Lời giải:
Kẻ A’H ,HM (đl 3)
Đặt A’H = x . Khi đó
A’N = x : sin 600 =
AN =
Mà HM = x.cot 450 = x
Nghĩa là x =
Vậy VABCD.A’B’C’D’ = AB.AD.x
=
LOẠI 2: THỂ TÍCH KHỐI CHÓP
Dạng 1: Khối chóp có cạnh bên vuông góc với đáy
Ví dụ 1: Cho hình chóp SABC có SB = SC = BC = CA = a . Hai mặt (ABC)
và (ASC) cùng vuông góc với (SBC). Tính thể tích hình chóp .
Lời giải:
Ta có
Do đó
Ví dụ 2: Cho hình chóp SABC có đáy ABC là tam giác vuông cân tại B với
AC = a biết SA vuông góc với đáy ABC và SB hợp với đáy một góc 60o.
1) Chứng minh các mặt bên là tam giác vuông .
2)Tính thể tích hình chóp .
Lời giải:
1)
mà ( đl 3 ).
Vậy các mặt bên chóp là tam giác vuông.
2) Ta có là hình chiếu của SB trên (ABC).
Vậy góc[SB,(ABC)] = .
vuông cân nên BA = BC =
SABC =
Vậy
Ví dụ 3: Cho hình chóp SABC có đáy ABC là tam giác đều cạnh a biết SA
vuông góc với đáy ABC và (SBC) hợp với đáy (ABC) một góc 60o.
Tính thể tích hình chóp .
Lời giải: Mlà trung điểm của BC,vì tam giác ABC đều nên AM BCSABC (đl3) .
Vậy góc[(SBC);(ABC)] = .
Ta có V =
Vậy V =
Ví dụ 4: Cho hình chóp SABCD có đáy ABCD là hình vuông có cạnh a và SA
vuông góc đáy ABCD và mặt bên (SCD) hợp với đáy một góc 60o.
1) Tính thể tích hình chóp SABCD.
2) Tính khoảng cách từ A đến mặt phẳng (SCD).
Lời giải: 1)Ta có và ( đl 3 ).(1)
Vậy góc[(SCD),(ABCD)] = = 60o .
vuông nên SA = AD.tan60o =
Vậy
2) Ta dựng AH ,vì CD(SAD) (do (1) ) nên CD AH
Vậy AH là khoảng cách từ A đến (SCD).
Vậy AH =
2) Dạng 2 : Khối chóp có một mặt bên vuông góc với đáy
Ví dụ 1: Cho hình chóp S.ABCD có đáy ABCD là hình vuông có cạnh a
Mặt bên SAB là tam giác đều nằm trong mặt phẳng vuông góc với đáyABCD,
1) Chứng minh rằng chân đường cao khối chóp trùng với trung điểm cạnh AB.
2) Tính thể tích khối chóp SABCD.
Lời giải:
Gọi H là trung điểm của AB.
đều
mà
Vậy H là chân đường cao của khối chóp.
Ta có tam giác SAB đều nên SA =
suy ra
Ví dụ 2: Cho tứ diện ABCD có ABC là tam giác đều ,BCD là tam giác vuông cân tại D , (ABC)(BCD) và AD hợp với (BCD) một góc 60o .
Tính thể tích tứ diện ABCD.
Lời giải:
Gọi H là trung điểm của BC.
Ta có tam giác ABC đều nên AH(BCD) , mà (ABC) (BCD) AH .
Ta có AHHDAH = AD.tan60o =
& HD = AD.cot60o =
BC = 2HD = suy ra
V =
Ví dụ 3: Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, có
BC = a. Mặt bên SAC vuông góc với đáy, các mặt bên còn lại đều tạo với mặt đáy một góc 450.
Chứng minh rằng chân đường cao khối chóp trùng với trung điểm cạnh AC.
Tính thể tích khối chóp SABC.
Lời giải:
a) Kẽ SH BC vì mp(SAC)mp(ABC) nên SHmp(ABC).
Gọi I, J là hình chiếu của H trên AB và BC SIAB, SJBC, theo giả thiết
Ta có: nên BH là đường phân giác của ừ đó suy ra H là trung điểm của AC.
b) HI = HJ = SH =VSABC=
3) Dạng 3 : Khối chóp đều
Ví dụ 1: Cho chóp tam giác đều SABC cạnh đáy bằng a và cạnh bên bằng 2a.
Chứng minh rằng chân đường cao kẻ từ S của hình chóp là tâm của tam giác
đều ABC.Tính thể tích chóp đều SABC .
Lời giải:
Dựng SO(ABC) Ta có SA = SB = SC suy ra OA = OB = OC
Vậy O là tâm của tam giác đều ABC.
Ta có tam giác ABC đều nên
AO =
.Vậy
Ví dụ 2:Cho khối chóp tứ giác SABCD có tất cả các cạnh có độ dài bằng a .
1) Chứng minh rằng SABCD là chóp tứ giác đều.
2) Tính thể tích khối chóp SABCD.
Lời giải:
Dựng SO (ABCD)
Ta có SA = SB = SC = SD nên
OA = OB = OC = ODABCD là hình thoi có đường tròn gnoại tiếp nên ABCD là hình vuông .
Ta có SA2 + SB2 = AB2 +BC2 = AC2 nên vuông tại S
Vậy
Ví dụ 3: Cho khối tứ diện đều ABCD cạnh bằng a, M là trung điểm DC.
Tính thể tích khối tứ diện đều ABCD.
b)Tính khoảng cách từ M đến mp(ABC).Suy ra thể tích hình chóp MABC.
Lời giải:
a) Gọi O là tâm của
,
b) Kẻ MH// DO, khoảng cách từ M đến mp(ABC) là MH
Vậy
Bài tập tương tự:
Bài 1: Cho hình chóp đều SABC có cạnh bên bằng a hợp với đáy ABC một góc 60o . Tính thể tích hình chóp. Đs:
Bài 2: Cho hình chóp tam giác đều SABC có cạnh bên a, góc ở đáy của mặt bên
là 45o.
1) Tính độ dài chiều cao SH của chóp SABC . Đs: SH =
2) Tính thể tích hình chóp SABC. Đs:
Bài 3: Cho hình chóp tam giác đều SABC có cạnh đáy a và mặt bên hợp với đáy
một góc 60o. Tính thể tích hình chóp SABC. Đs:
Bài 4 : Cho chóp tam giác đều có đường cao h hợp với một mặt bên một góc 30o .
Tính thể tích hình chóp. Đs:
Bài 5 : Cho hình chóp tam giác đều có đường cao h và mặt bên có góc ở đỉnh
bằng 60o. Tính thể tích hình chóp. Đs:
Bài 6 : Cho hình chóp tứ giác đều SABCD có cạnh đáy a và .
1) Tính tổng diện tích các mặt bên của hình chóp đều. Đs:
2) Tính thể tích hình chóp. Đs:
Bài 7 : Cho hình chóp tứ giác đều SABCD có chiều cao h ,góc ở đỉnh của mặt bên
bằng 60o. Tính thể tích hình chóp. Đs:
Bài 8: Cho hình chóp tứ giác đều có mặt bên hợp với đáy một góc 45o và khoảng
cách từ chân đường cao của chóp đến mặt bên bằng a.
Tính thể tích hình chóp . Đs:
Bài 9: Cho hình chóp tứ giác đều có cạnh bên bằng a hợp với đáy một góc 60o.
Tính thề tích hình chóp. Đs:
Bài 10: Cho hình chóp SABCD có tất cả các cạnh bằng nhau. Chứng minh rằng
SABCD là chóp tứ giác đều.Tính cạnh của hình chóp này khi thể tích của
nó bằng . Đs: AB = 3a
4) Dạng 4 : Khối chóp & phương pháp tỷ số thể tích
Ví dụ 1: Cho hình chóp S.ABC có tam giác ABC vuông cân ở B, ,
SA vuông góc với đáy ABC ,
1) Tính thể tích của khối chóp S.ABC.
2) Gọi G là trọng tâm tam giác ABC, mặt phẳng () qua AG và song song
với BC cắt SC, SB lần lượt tại M, N. Tính thể tích của khối chóp S.AMN
Lời giải:
a)Ta có: và
+
Vậy:
b) Gọi I là trung điểm BC.
G là trọng tâm,ta có :
// BC MN// BC
Vậy:
Ví dụ 2: Cho tam giác ABC vuông cân ở A và . Trên đường thẳng qua C và vuông góc với mặt phẳng (ABC) lấy điểm D sao cho . Mặt phẳng qua C vuông góc với BD, cắt BD tại F và cắt AD tại E.
Tính thể tích khối tứ diện ABCD.
Chứng minh
Tính thể tích khối tứ diện CDEF.
Lời giải:
a)Tính :
b)Tacó:
Ta có:
c) Tính :Ta có:
Mà , chia cho
Tương tự:
Từ(*) .Vậy
Ví dụ 3: Cho khối chóp tứ giác đều SABCD. Một mặt phẳng qua A, B và trung điểm M của SC . Tính tỉ số thể tích của hai phần khối chóp bị phân chia bởi mặt phẳng đó.
Lời giải:
Kẻ MN // CD (N thì hình thang ABMN là thiết diện của khối chóp khi cắt bởi mặt phẳng (ABM).
+ Mà VSABMN = VSANB + VSBMN = .
Suy ra VABMN.ABCD =
Do đó :
Ví dụ 4: Cho hình chóp tứ giác đều S.ABCD, đáy là hình vuông cạnh a, cạnh bên tạo với đáy góc . Gọi M là trung điểm SC. Mặt phẳng đi qua AM và song song với BD, cắt SB tại E và cắt SD tại F.
Hảy xác định mp(AEMF)
Tính thể tích khối chóp S.ABCD
Tính thể tích khối chóp S.AEMF
Lời giải:
a) Gọi . Ta có (AEMF) //BD EF // BD
b) với
+ có :
Vậy :
c) Phân chia chóp tứ giác ta có
= VSAMF + VSAME =2VSAMF
= 2VSACD = 2 VSABC
Xét khối chóp S.AMF và S.ACD
Ta có :
có trọng tâm I, EF // BD nên:
Ví dụ 5: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc đáy, . Gọi B’, D’ là hình chiếu của A lần lượt lên SB, SD. Mặt phẳng (AB’D’) cắt SC tại C’.
Tính thể tích khối chóp S.ABCD.
Chứng minh
Tính thể tích khối chóp S.AB’C’D’
Lời giải:
a) Ta có:
b) Ta có
& Suy ra:
nên AB'SC .Tương tự AD'SC.
Vậy SC (AB'D')
c) Tính
+Tính : Ta có:
vuông cân nên
Ta có:
Từ
+
5) Dạng 5 : Ôn tập khối chóp và lăng trụ
Ví dụ 1: Cho hình chóp S.ABCD có ABCD là hình vuông cạnh 2a, SA vuông
góc đáy. Góc giữa SC và đáy bằng và M là trung điểm của SB.
1) Tính thể tích của khối chóp S.ABCD.
2) Tính thể tích của khối chóp MBCD.
.
Lời giải:
a)Ta có
+
+
b) Kẻ
Ta có: ,
Ví dụ 2: Cho hình chóp tam giác S.ABC có AB = 5a, BC = 6a, CA = 7a. Các mặt
bên SAB, SBC, SCA tạo với đáy một góc 60o .Tính thể tích khối chóp.
Lời giải:
Hạ SH, kẽ HEAB, HFBC, HJAC
suy ra SEAB, SFBC, SJAC . Ta có nên HE =HF = HJ = r
( r là bán kính đường tròn ngọai tiếp )
Ta có SABC =
với p = Nên SABC =
Mặt khác SABC = p.r
Tam giác vuông SHE:
SH = r.tan 600 =
Vậy VSABC = .
Ví dụ 3: Cho hình hộp chữ nhật ABCD.A’B’C’D’ có , AD = a,
AA’ = a, O là giao điểm của AC và BD.
Tính thể tích khối hộp chữ nhật, khối chóp OA’B’C’D’
Tính thể tích khối OBB’C’.
Tính độ dài đường cao đỉnh C’ của tứ diện OBB’C’.
Lời giải:
a) Gọi thể tích khối hộp chữ nhật là V.
Ta có :
* Khối OA’B’C’D’ có đáy và đường cao giống khối hộp nên:
b) M là trung điểm BC
c) Gọi C’H là đường cao đỉnh C’ của tứ
diện OBB’C’. Ta có :
Ví dụ 4: Cho hình lập phương ABCD.A’B’C’D’có cạnh bằng a.
Tính thể tích khối tứ diện ACB’D’.
Lời giải:
Hình lập phương được chia thành: khối ACB’D’ và bốn khối CB’D’C’, BB’AC, D’ACD, AB’A’D’.
+Các khối CB’D’C’, BB’AC, D’ACD, AB’A’D’ có diện tích đáy và chiều cao bằng nhau nên có cùng thể tích.
Khối CB’D’C’ có
+Khối lập phương có thể tích:
Ví dụ 5: Cho hình lăng trụ đứng tam giác có các cạnh bằng a.
Tính thể tích khối tứ diện A’B’ BC.
E là trung điểm cạnh AC, mp(A’B’E) cắt BC tại F. Tính thể tích khối CA’B’FE.
Lời giải:
a) Khối A’B’ BC:Gọi I là trung điểm AB,
b)Khối CA’B’FE: phân ra hai khối CEFA’ và CFA’B’.
+Khối A’CEFcó đáy là CEF, đường cao A’A nên
+Gọi J là trung điểm B’C’. Ta có khối A’B’CF có đáy là CFB’, đường cao JA’ nên
+ Vậy :
File đính kèm:
- PP_ luyen tap HHKG-12.doc