Ôn tập Toán 8 - Năm học 2008-2009

Bài 1 Thực hiện các phép tính sau:

a) (2x - y)(4x2 - 2xy + y2) b) (6x5y2 - 9x4y3 + 15x3y4): 3x3y2

c) (2x3 - 21x2 + 67x - 60): (x - 5) d) (x4 + 2x3 +x - 25):(x2 +5)

e) (27x3 - 8): (6x + 9x2 + 4)

Bài 2 Rút gọn các biểu thức sau:

a) (x + y)2 - (x - y)2 b) (a + b)3 + (a - b)3 - 2a3 c) 98.28 - (184 - 1)(184 + 1)

 

doc3 trang | Chia sẻ: quoctuanphan | Lượt xem: 1421 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Ôn tập Toán 8 - Năm học 2008-2009, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
ễN TẬPTOÁN 8 - NĂM HỌC 2008-2009 PHẦN ĐẠI SỐ Bài 1 Thực hiện các phép tính sau: a) (2x - y)(4x2 - 2xy + y2) b) (6x5y2 - 9x4y3 + 15x3y4): 3x3y2 c) (2x3 - 21x2 + 67x - 60): (x - 5) d) (x4 + 2x3 +x - 25):(x2 +5) e) (27x3 - 8): (6x + 9x2 + 4) Bài 2 Rút gọn các biểu thức sau: a) (x + y)2 - (x - y)2 b) (a + b)3 + (a - b)3 - 2a3 c) 98.28 - (184 - 1)(184 + 1) Bài 3 Phân tích các đa thức sau thành nhân tử: a) x2 - y2 - 2x + 2y b)2x + 2y - x2 - xy c) 3a2 - 6ab + 3b2 - 12c2 d)x2 - 25 + y2 + 2xy e) a2 + 2ab + b2 - ac - bc f)x2 - 2x - 4y2 - 4y g) x2y - x3 - 9y + 9x h)x2(x-1) + 16(1- x) n) 81x2 - 6yz - 9y2 - z2 m)xz-yz-x2+2xy-y2 p) x2 + 8x + 15 k) x2 - x - 12 l) 81x2 + 4 Bài 4 Tìm x biết: a) 2x(x-5)-x(3+2x)=26 b) 5x(x-1) = x-1 c) 2(x+5) - x2-5x = 0 d) (2x-3)2-(x+5)2=0 e) 3x3 - 48x = 0 f) x3 + x2 - 4x = 4 Bài 5 Cho các phân thức sau: A = B = C = D = E = F = a) Với điều kiện nào của x thì giá trị của các phân thức trên xác định. b)Tìm x để giá trị của các pthức trên bằng 0. c)Rút gọn phân thức trên. Bài 6 Thực hiện các phép tính sau: a) + b) c) + + d) Bài 7.Giải các phương trình sau: a) 5 – (x – 6) = 4(3 – 2x) b) 3 – 4x(25 – 2x) = 8x2 + x – 300 Bài 8. Giải các phương trình sau: a) 2x(x – 3) + 5(x – 3) = 0 b) x2 – 5x + 6 = 0 c) (x2 – 4) – (x – 2)(3 – 2x) = 0 d) 2x3 + 6x2 = x2 + 3x e) |x - 5| = 3 f) |3x - 1| - x = 2 g) (2x + 5)2 = (x + 2)2 Bài 9. Giải các bất phương trình sau rồi biểu diễn tập nghiệm trên trục số: d) (x – 3)2 < x2 – 5x + 4 e) x2 – 4x + 3 ³ 0 f) (x – 3)(x + 3) Ê (x + 2)2 + 3 g) x3 – 2x2 + 3x – 6 < 0 Bài 10. Cho m < n. Hãy so sánh: a) m + 5 và n + 5 c) – 3m + 1 và - 3n + 1 b) - 8 + 2m và - 8 + 2n Bài 11. Cho a > b. Hãy chứng minh: a) a + 2 > b + 2 c) 3a + 5 > 3b + 2 b) - 2a – 5 < - 2b – 5 d) 2 – 4a < 3 – 4b PHẦN HèNH HỌC Bài 12. Tam giác ABC cân tại A, BC = 120cm, AB = 100cm.Các đường cao AD và BE gặp nhau ở H. a.Tìm các tam giác đồng dạng với tam giác BDH. b.Tính độ dài HD, BH c.Tính độ dài HE Bài 13. Cho tam giác ABC, các đường cao BD, CE cắt nhau ở H.Gọi K là hình chiếu của H trên BC.Chứng minh rằng: a.BH.BD = BK.BC b.CH.CE = CK.CB Bài 14. Cho hình thang cân MNPQ (MN //PQ, MN < PQ), NP = 15cm, đường cao NI = 12cm, QI = 16 cm. a) Tính IP. b) Chứng minh: QN ^ NP. c) Tính diện tích hình thang MNPQ. d) Gọi E là trung điểm của PQ. Đường thẳng vuông góc với EN tại N cắt đường thẳng PQ tại K. Chứng minh: KN2 = KP . KQ Bài15. Cho tam giác ABC vuông tạo A; AB = 15cm, AC = 20cm, đường cao AH. a) Chứng minh: DHBA đồng dạng với DABC. b) Tính BC, AH. c) Gọi D là điểm đối xứng với B qua H. Vẽ hình bình hành ADCE. Tứ giác ABCE là hình gì? Tại sao? d) Tính AE. e) Tính diện tích tứ giác ABCE. Bài16.Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. Từ B kẻ tia Bx ^ AB, tia Bx cắt tia AH tại K. a) Tứ giác ABKC là hình gì ? Tại sao? b) Chứng minh: DABK đồng dạng với DCHA. Từ đó suy ra: AB . AC = AK . CH c) Chứng minh: AH2 = HB . HC d) Giả sử BH = 9cm, HC = 16cm. Tính AB, AH. Bài17.Cho tam giác ABC có ba góc nhọn. Đường cao AF, BE cắt nhau tại H. Từ A kẻ tia Ax vuông góc với AC, từ B kẻ tia By vuông góc với BC. Tia Ax và By cắt nhau tại K. a) Tứ giác AHBK là hình gì? Tại sao? b) Chứng minh: DHAE đồng dạng với DHBF. c) Chứng minh: CE . CA = CF . CB d) DABC cần thêm điều kiện gì để tứ giác AHBK là hình thoi. Bài18.Cho tam giác ABC, AB = 4cm, AC = 5cm. Từ trung điểm M của AB vẽ một tia Mx cắt AC tại N sao cho gócAMN = gócACB. a) Chứng minh: DABC đồng dạng với DANM. b) Tính NC. c) Từ C kẻ một đường thẳng song song với AB cắt MN tại K. Tính tỉ số . Bài19.Cho DABC có AB = 4cm, AC = 5cm, BC = 6cm. Trên tia đối của tia AB lấy điểm D sao cho AD = 5cm. a) Chứng minh: DABC đồng dạng với DCBD. b) Tính CD. c) Chứng minh: gócBAC = 2.gócACD Bài20.Cho tam giác vuông ABC (gócA = 90o), đường cao AH. Biết BH = 4cm, CH = 9cm. a) Chứng minh: AB2 = BH . BC b) Tính AB, AC. c) Đường phân giác BD cắt AH tại E (D ẻ AC). Tính và chứng minh: . Bài21.Cho hình bình hành ABCD. Trên cạnh BC lấy điểm F. Tia AF cắt BD và DC lần lượt ở E và G. Chứng minh: a) DBEF đồng dạng với DDEA. DDGE đồng dạng với DBAE. b) AE2 = EF . EG c) BF . DG không đổi khi F thay đổi trên cạnh BC. Bài22.Cho DABC, vẽ đường thẳng song song với BC cắt AB ở D và cắt AC ở E. Qua C kẻ tia Cx song song với AB cắt DE ở G. a) Chứng minh: DABC đồng dạng với DCEG. b) Chứng minh: DA . EG = DB . DE c) Gọi H là giao điểm của AC và BG. Chứng minh: HC2 = HE . HA Bài23.Cho DABC cân tại A (góc A < 90o). Các đường cao AD và CE cắt nhau tại H. a) Chứng minh: DBEC đồng dạng với DBDA. b) Chứng minh: DDHC đồng dạng với DDCA. Từ đó suy ra: DC2 = DH . DA c) Cho AB = 10cm, AE = 8cm. Tính EC, HC.

File đính kèm:

  • docon tap he toan 8 len 9cuc hay.doc
Giáo án liên quan